Grazing incidence diffraction

File:Grazing incidence diffraction GIXD.png

Grazing incidence diffraction (GID) is a technique for interrogating a material using small incidence angles for an incoming wave, often leading to the diffraction being surface sensitive. It occurs in many different areas:

  • Reflection high-energy electron diffraction (RHEED), where electrons of relatively high energy diffract at small angles from a surface. RHEED is used to interrogate surface structure.{{Cite book |last1=Ichimiya |first1=Ayahiko |url=https://www.worldcat.org/oclc/54529276 |title=Reflection high-energy electron diffraction |date=2004 |publisher=Cambridge University Press |last2=Cohen | first2=Philip |isbn=0-521-45373-9 |location=Cambridge, U.K. |oclc=54529276}}{{Cite book |last=Braun |first=Wolfgang |url=https://www.worldcat.org/oclc/40857022 |title=Applied RHEED : reflection high-energy electron diffraction during crystal growth |date=1999 |publisher=Springer |isbn=3-540-65199-3 |location=Berlin |oclc=40857022}}
  • Surface X-ray diffraction (SXRD), which is similar to RHEED but uses X-rays, and is also used to interrogate surface structure.{{cite journal | last=Feidenhans'l | first=R. | title=Surface structure determination by X-ray diffraction | journal=Surface Science Reports | publisher=Elsevier BV | volume=10 | issue=3 | year=1989 | issn=0167-5729 | doi=10.1016/0167-5729(89)90002-2 | pages=105–188}}
  • X-ray standing waves, another X-ray variant where the intensity decay into a sample from diffraction is used to analyze chemistry.{{cite journal|author=B. W. Batterman and H. Cole|title=Dynamical Diffraction of X Rays by Perfect Crystals|journal=Reviews of Modern Physics|volume=36|issue=3|year=1964|page=681|doi=10.1103/RevModPhys.36.681}}
  • Grazing-incidence small-angle scattering (GISAS) a hybrid approach using small scattering (diffraction) angles with X-rays or neutrons.{{cite journal | last1=Levine | first1=J. R. | last2=Cohen | first2=J. B. | last3=Chung | first3=Y. W. | last4=Georgopoulos | first4=P. | title=Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth | journal=Journal of Applied Crystallography | publisher=International Union of Crystallography (IUCr) | volume=22 | issue=6 | date=1989-12-01 | issn=0021-8898 | doi=10.1107/s002188988900717x | pages=528–532}}
  • X-ray reflectivity, yet another related technique, but here the intensity of the specular reflected beam is measured.J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, Wiley, New York, (2001).J. Daillant, A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications. Springer, (1999).M. Tolan, X-Ray Scattering from Soft-Matter Thin Films, Springer, (1999).
  • Grazing incidence atom scattering,{{Cite journal |last=Khemliche |first=H. |last2=Rousseau |first2=P. |last3=Roncin |first3=P. |last4=Etgens |first4=V. H. |last5=Finocchi |first5=F. |date=2009 |title=Grazing incidence fast atom diffraction: An innovative approach to surface structure analysis |url=http://dx.doi.org/10.1063/1.3246162 |journal=Applied Physics Letters |volume=95 |issue=15 |pages=151901 |doi=10.1063/1.3246162 |issn=0003-6951|url-access=subscription }}{{Cite journal |last=Bundaleski |first=N. |last2=Khemliche |first2=H. |last3=Soulisse |first3=P. |last4=Roncin |first4=P. |date=2008 |title=Grazing Incidence Diffraction of keV Helium Atoms on a Ag(110) Surface |url=http://dx.doi.org/10.1103/physrevlett.101.177601 |journal=Physical Review Letters |volume=101 |issue=17 |doi=10.1103/physrevlett.101.177601 |issn=0031-9007|url-access=subscription }} where the fact that atoms (and ions) can also be waves is used to diffract from surfaces.
  • Quantum reflection, where very low kinetic energy atoms or molecules are diffracted (reflected) from surfaces.{{Cite journal |last=Shimizu |first=Fujio |date=2001 |title=Specular Reflection of Very Slow Metastable Neon Atoms from a Solid Surface |url=https://link.aps.org/doi/10.1103/PhysRevLett.86.987 |journal=Physical Review Letters |language=en |volume=86 |issue=6 |pages=987–990 |doi=10.1103/PhysRevLett.86.987 |issn=0031-9007|url-access=subscription }}
  • Evanescent waves, which occur with all of the above and also photons where there is no flow of energy into the material.

More details and citations on these can be found in the links provided above.

See also

References

{{Reflist|30em}}

Category:Scientific techniques

{{physics-stub}}