Great truncated icosidodecahedron
{{Short description|Polyhedron with 62 faces}}
{{Uniform polyhedra db|Uniform polyhedron stat table|gtID}}
File:Great truncated icosidodecahedron.stl
In geometry, the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U68. It has 62 faces (30 squares, 20 hexagons, and 12 decagrams), 180 edges, and 120 vertices.{{Cite web|url=https://www.mathconsult.ch/static/unipoly/68.html|title=68: great truncated icosidodecahedron|last=Maeder|first=Roman|website=MathConsult}} It is given a Schläfli symbol {{math|t0,1,2{{mset|{{sfrac|5|3}},3}},}} and Coxeter-Dynkin diagram, {{CDD|node_1|5|rat|d3|node_1|3|node_1}}.
Cartesian coordinates
Cartesian coordinates for the vertices of a great truncated icosidodecahedron centered at the origin are all the even permutations of
\Bigl(& \pm\,\varphi,& \pm\,\varphi,& \pm \bigl[3-\frac{1}{\varphi}\bigr] &\Bigr),\\
\Bigl(& \pm\,2\varphi,& \pm\,\frac{1}{\varphi},& \pm\,\frac{1}{\varphi^3} &\Bigl), \\
\Bigl(& \pm\,\varphi,& \pm\,\frac{1}{\varphi^2},& \pm \bigl[1+\frac{3}{\varphi}\bigr] &\Bigr), \\
\Bigl(& \pm\,\sqrt{5},& \pm\,2,& \pm\,\frac{\sqrt{5}}{\varphi} &\Bigr), \\
\Bigl(& \pm\,\frac{1}{\varphi},& \pm\,3,& \pm\,\frac{2}{\varphi} &\Bigr),
\end{array}
where is the golden ratio.
{{Clear}}
Related polyhedra
= Great disdyakis triacontahedron =
{{Uniform polyhedra db|Uniform dual polyhedron stat table|gtID}}
File:Great disdyakis triacontahedron.stl
The great disdyakis triacontahedron (or trisdyakis icosahedron) is a nonconvex isohedral polyhedron. It is the dual of the great truncated icosidodecahedron. Its faces are triangles.
== Proportions ==
The triangles have one angle of , one of and one of The dihedral angle equals Part of each triangle lies within the solid, hence is invisible in solid models.
See also
References
{{Reflist}}
- {{Citation | last1=Wenninger | first1=Magnus | author1-link=Magnus Wenninger | title=Dual Models | publisher=Cambridge University Press | isbn=978-0-521-54325-5 |mr=730208 | year=1983 | doi=10.1017/CBO9780511569371}} p. 96
External links
- {{mathworld | urlname = GreatTruncatedIcosidodecahedron| title = Great truncated icosidodecahedron}}
- {{mathworld | urlname = GreatDisdyakisTriacontahedron| title =Great disdyakis triacontahedron}}
{{Nonconvex polyhedron navigator}}
{{Polyhedron-stub}}