Great truncated icosidodecahedron

{{Short description|Polyhedron with 62 faces}}

{{Uniform polyhedra db|Uniform polyhedron stat table|gtID}}

File:Great truncated icosidodecahedron.stl

In geometry, the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U68. It has 62 faces (30 squares, 20 hexagons, and 12 decagrams), 180 edges, and 120 vertices.{{Cite web|url=https://www.mathconsult.ch/static/unipoly/68.html|title=68: great truncated icosidodecahedron|last=Maeder|first=Roman|website=MathConsult}} It is given a Schläfli symbol {{math|t0,1,2{{mset|{{sfrac|5|3}},3}},}} and Coxeter-Dynkin diagram, {{CDD|node_1|5|rat|d3|node_1|3|node_1}}.

Cartesian coordinates

Cartesian coordinates for the vertices of a great truncated icosidodecahedron centered at the origin are all the even permutations of

\begin{array}{ccclc}

\Bigl(& \pm\,\varphi,& \pm\,\varphi,& \pm \bigl[3-\frac{1}{\varphi}\bigr] &\Bigr),\\

\Bigl(& \pm\,2\varphi,& \pm\,\frac{1}{\varphi},& \pm\,\frac{1}{\varphi^3} &\Bigl), \\

\Bigl(& \pm\,\varphi,& \pm\,\frac{1}{\varphi^2},& \pm \bigl[1+\frac{3}{\varphi}\bigr] &\Bigr), \\

\Bigl(& \pm\,\sqrt{5},& \pm\,2,& \pm\,\frac{\sqrt{5}}{\varphi} &\Bigr), \\

\Bigl(& \pm\,\frac{1}{\varphi},& \pm\,3,& \pm\,\frac{2}{\varphi} &\Bigr),

\end{array}

where \varphi = \tfrac{1 + \sqrt 5}{2} is the golden ratio.

{{Clear}}

Related polyhedra

= Great disdyakis triacontahedron =

{{Uniform polyhedra db|Uniform dual polyhedron stat table|gtID}}

File:Great disdyakis triacontahedron.stl

The great disdyakis triacontahedron (or trisdyakis icosahedron) is a nonconvex isohedral polyhedron. It is the dual of the great truncated icosidodecahedron. Its faces are triangles.

== Proportions ==

The triangles have one angle of \arccos\left(\tfrac{1}{6}+\tfrac{1}{15}\sqrt{5}\right) \approx 71.594\,636\,220\,88^{\circ}, one of \arccos\left(\tfrac{3}{4}+\tfrac{1}{10}\sqrt{5}\right) \approx 13.192\,999\,040\,74^{\circ} and one of \arccos\left(\tfrac{3}{8}-\tfrac{5}{24}\sqrt{5}\right) \approx 95.212\,364\,738\,38^{\circ}. The dihedral angle equals \arccos\left(\tfrac{-179+24\sqrt{5}}{241}\right) \approx 121.336\,250\,807\,39^{\circ}. Part of each triangle lies within the solid, hence is invisible in solid models.

See also

References

{{Reflist}}

  • {{Citation | last1=Wenninger | first1=Magnus | author1-link=Magnus Wenninger | title=Dual Models | publisher=Cambridge University Press | isbn=978-0-521-54325-5 |mr=730208 | year=1983 | doi=10.1017/CBO9780511569371}} p. 96