Griffiths inequality

{{Short description|Correlation inequality in statistical mechanics}}

In statistical mechanics, the Griffiths inequality, sometimes also called Griffiths–Kelly–Sherman inequality or GKS inequality, named after Robert B. Griffiths, is a correlation inequality for ferromagnetic spin systems. Informally, it says that in ferromagnetic spin systems, if the 'a-priori distribution' of the spin is invariant under spin flipping, the correlation of any monomial of the spins is non-negative; and the two point correlation of two monomial of the spins is non-negative.

The inequality was proved by Griffiths for Ising ferromagnets with two-body interactions,{{cite journal|last=Griffiths|first=R.B.|authorlink=Robert Griffiths (physicist)|title=Correlations in Ising Ferromagnets. I|journal=J. Math. Phys.|year=1967|volume=8|issue=3|pages=478–483|doi=10.1063/1.1705219|bibcode=1967JMP.....8..478G }} then generalised by Kelly and Sherman to interactions involving an arbitrary number of spins,{{cite journal|last1=Kelly|first1=D.J.|last2=Sherman|first2=S.|title=General Griffiths' inequalities on correlations in Ising ferromagnets|journal=J. Math. Phys.|year=1968|volume=9|issue=3|pages=466–484|doi=10.1063/1.1664600|bibcode=1968JMP.....9..466K }} and then by Griffiths to systems with arbitrary spins.{{cite journal|last=Griffiths|first=R.B.|authorlink=Robert Griffiths (physicist)|title=Rigorous Results for Ising Ferromagnets of Arbitrary Spin|journal=J. Math. Phys.|year=1969|volume=10|issue=9|pages=1559–1565|doi=10.1063/1.1665005|bibcode=1969JMP....10.1559G }} A more general formulation was given by Ginibre,{{cite journal|last=Ginibre|first=J.|authorlink=Jean Ginibre|title=General formulation of Griffiths' inequalities|journal=Comm. Math. Phys.|year=1970|volume=16|issue=4|pages=310–328|doi=10.1007/BF01646537|bibcode=1970CMaPh..16..310G |s2cid=120649586|url=http://projecteuclid.org/euclid.cmp/1103842172}} and is now called the Ginibre inequality.

Definitions

Let \textstyle \sigma=\{\sigma_j\}_{j \in \Lambda} be a configuration of (continuous or discrete) spins on a lattice Λ. If AΛ is a list of lattice sites, possibly with duplicates, let \textstyle \sigma_A = \prod_{j \in A} \sigma_j be the product of the spins in A.

Assign an a-priori measure dμ(σ) on the spins;

let H be an energy functional of the form

:H(\sigma)=-\sum_{A} J_A \sigma_A ~,

where the sum is over lists of sites A, and let

: Z=\int d\mu(\sigma) e^{-H(\sigma)}

be the partition function. As usual,

: \langle f \rangle = \frac{1}{Z} \sum_\sigma f(\sigma) e^{-H(\sigma)}

stands for the ensemble average.

The system is called ferromagnetic if, for any list of sites A, JA ≥ 0. The system is called invariant under spin flipping if, for any j in Λ, the measure μ is preserved under the sign flipping map σ → τ, where

: \tau_k = \begin{cases}

\sigma_k, &k\neq j, \\

- \sigma_k, &k = j.

\end{cases}

Statement of inequalities

=First Griffiths inequality=

In a ferromagnetic spin system which is invariant under spin flipping,

: \langle \sigma_A\rangle \geq 0

for any list of spins A.

=Second Griffiths inequality=

In a ferromagnetic spin system which is invariant under spin flipping,

: \langle \sigma_A\sigma_B\rangle \geq

\langle \sigma_A\rangle \langle \sigma_B\rangle

for any lists of spins A and B.

The first inequality is a special case of the second one, corresponding to B = ∅.

Proof

Observe that the partition function is non-negative by definition.

Proof of first inequality: Expand

: e^{-H(\sigma)} = \prod_{B} \sum_{k \geq 0} \frac{J_B^k \sigma_B^k}{k!} = \sum_{\{k_C\}_C} \prod_B \frac{J_B^{k_B} \sigma_B^{k_B}}{k_B!}~,

then

:\begin{align}Z \langle \sigma_A \rangle

&= \int d\mu(\sigma) \sigma_A e^{-H(\sigma)}

= \sum_{\{k_C\}_C} \prod_B \frac{J_B^{k_B}}{k_B!} \int d\mu(\sigma) \sigma_A \sigma_B^{k_B} \\

&= \sum_{\{k_C\}_C} \prod_B \frac{J_B^{k_B}}{k_B!} \int d\mu(\sigma) \prod_{j \in \Lambda} \sigma_j^{n_A(j) + k_B n_B(j)}~,\end{align}

where nA(j) stands for the number of times that j appears in A. Now, by invariance under spin flipping,

:\int d\mu(\sigma) \prod_j \sigma_j^{n(j)} = 0

if at least one n(j) is odd, and the same expression is obviously non-negative for even values of n. Therefore, Z<σA>≥0, hence also <σA>≥0.

Proof of second inequality. For the second Griffiths inequality, double the random variable, i.e. consider a second copy of the spin, \sigma', with the same distribution of \sigma. Then

: \langle \sigma_A\sigma_B\rangle-

\langle \sigma_A\rangle \langle \sigma_B\rangle=

\langle\langle\sigma_A(\sigma_B-\sigma'_B)\rangle\rangle~.

Introduce the new variables

:

\sigma_j=\tau_j+\tau_j'~,

\qquad

\sigma'_j=\tau_j-\tau_j'~.

The doubled system \langle\langle\;\cdot\;\rangle\rangle is ferromagnetic in \tau, \tau' because -H(\sigma)-H(\sigma') is a polynomial in \tau, \tau' with positive coefficients

:\begin{align}

\sum_A J_A (\sigma_A+\sigma'_A) &= \sum_A J_A\sum_{X\subset A}

\left[1+(-1)^

X
\right] \tau_{A \setminus X} \tau'_X

\end{align}

Besides the measure on \tau,\tau' is invariant under spin flipping because d\mu(\sigma)d\mu(\sigma') is.

Finally the monomials \sigma_A, \sigma_B-\sigma'_B are polynomials in \tau,\tau' with positive coefficients

:\begin{align}

\sigma_A &= \sum_{X \subset A} \tau_{A \setminus X} \tau'_{X}~, \\

\sigma_B-\sigma'_B &= \sum_{X\subset B}

\left[1-(-1)^

X
\right] \tau_{B \setminus X} \tau'_X~.

\end{align}

The first Griffiths inequality applied to \langle\langle\sigma_A(\sigma_B-\sigma'_B)\rangle\rangle gives the result.

More details are in {{cite book|last1=Glimm|first=J.|author1-link=James Glimm|last2=Jaffe|first2=A.|author2-link=Arthur Jaffe|title=Quantum Physics. A functional integral point of view|publisher=Springer-Verlag|year=1987|isbn=0-387-96476-2|location=New York}} and.{{cite book|last1=Friedli|first=S.|last2=Velenik|first2=Y.|title=Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction|publisher=Cambridge University Press|location=Cambridge |year=2017 |isbn=9781107184824 |url=http://www.unige.ch/math/folks/velenik/smbook/index.html}}

Extension: Ginibre inequality

The Ginibre inequality is an extension, found by Jean Ginibre, of the Griffiths inequality.

=Formulation=

Let (Γ, μ) be a probability space. For functions fh on Γ, denote

: \langle f \rangle_h = \int f(x) e^{-h(x)} \, d\mu(x) \Big/ \int e^{-h(x)} \, d\mu(x).

Let A be a set of real functions on Γ such that. for every f1,f2,...,fn in A, and for any choice of signs ±,

: \iint d\mu(x) \, d\mu(y) \prod_{j=1}^n (f_j(x) \pm f_j(y)) \geq 0.

Then, for any f,g,−h in the convex cone generated by A,

: \langle fg\rangle_h - \langle f \rangle_h \langle g \rangle_h \geq 0.

=Proof=

Let

: Z_h = \int e^{-h(x)} \, d\mu(x).

Then

: \begin{align}

&Z_h^2 \left( \langle fg\rangle_h - \langle f \rangle_h \langle g \rangle_h \right)\\

&\qquad= \iint d\mu(x) \, d\mu(y) f(x) (g(x) - g(y)) e^{-h(x)-h(y)} \\

&\qquad= \sum_{k=0}^\infty

\iint d\mu(x) \, d\mu(y) f(x) (g(x) - g(y)) \frac{(-h(x)-h(y))^k}{k!}.

\end{align}

Now the inequality follows from the assumption and from the identity

: f(x) = \frac{1}{2} (f(x)+f(y)) + \frac{1}{2} (f(x)-f(y)).

=Examples=

Applications

  • The thermodynamic limit of the correlations of the ferromagnetic Ising model (with non-negative external field h and free boundary conditions) exists.

:This is because increasing the volume is the same as switching on new couplings JB for a certain subset B. By the second Griffiths inequality

::\frac{\partial}{\partial J_B}\langle \sigma_A\rangle=

\langle \sigma_A\sigma_B\rangle-

\langle \sigma_A\rangle \langle \sigma_B\rangle\geq 0

:Hence \langle \sigma_A\rangle is monotonically increasing with the volume; then it converges since it is bounded by 1.

  • The one-dimensional, ferromagnetic Ising model with interactions J_{x,y}\sim |x-y|^{-\alpha} displays a phase transition if 1<\alpha <2 .

:This property can be shown in a hierarchical approximation, that differs from the full model by the absence of some interactions: arguing as above with the second Griffiths inequality, the results carries over the full model.{{cite journal|last=Dyson|first=F.J.|authorlink=Freeman Dyson|title=Existence of a phase-transition in a one-dimensional Ising ferromagnet|journal=Comm. Math. Phys.|year=1969|volume=12|issue=2|pages=91–107|doi=10.1007/BF01645907|bibcode=1969CMaPh..12...91D |s2cid=122117175|url=http://projecteuclid.org/euclid.cmp/1103841344 }}

  • The Ginibre inequality provides the existence of the thermodynamic limit for the free energy and spin correlations for the two-dimensional classical XY model. Besides, through Ginibre inequality, Kunz and Pfister proved the presence of a phase transition for the ferromagnetic XY model with interaction J_{x,y}\sim |x-y|^{-\alpha} if 2<\alpha < 4 .
  • Aizenman and Simon{{cite journal|last1=Aizenman|first1=M.|author1-link=Michael Aizenman|last2=Simon|first2=B.|author2-link=Barry Simon|title=A comparison of plane rotor and Ising models|journal=Phys. Lett. A|year=1980|volume=76|issue=3–4|pages=281–282|doi=10.1016/0375-9601(80)90493-4|bibcode=1980PhLA...76..281A }} used the Ginibre inequality to prove that the two point spin correlation of the ferromagnetic classical XY model in dimension D, coupling J>0 and inverse temperature \beta is dominated by (i.e. has upper bound given by) the two point correlation of the ferromagnetic Ising model in dimension D, coupling J>0, and inverse temperature \beta/2

::\langle \mathbf{s}_i\cdot \mathbf{s}_j\rangle_{J,2\beta}

\le \langle \sigma_i\sigma_j\rangle_{J,\beta}

:Hence the critical \beta of the XY model cannot be smaller than the double of the critical \beta of the Ising model

:: \beta_c^{XY}\ge 2\beta_c^{\rm Is}~;

:in dimension D = 2 and coupling J = 1, this gives

:: \beta_c^{XY} \ge \ln(1 + \sqrt{2}) \approx 0.88~.

  • There exists a version of the Ginibre inequality for the Coulomb gas that implies the existence of thermodynamic limit of correlations.{{cite journal|last1=Fröhlich|first1=J.|author1-link=Jürg Fröhlich|last2=Park|first2=Y.M.|title=Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems|journal=Comm. Math. Phys.|year=1978|volume=59|issue=3|pages=235–266|doi=10.1007/BF01611505|bibcode=1978CMaPh..59..235F |s2cid=119758048|url=http://projecteuclid.org/euclid.cmp/1103901661 }}
  • Other applications (phase transitions in spin systems, XY model, XYZ quantum chain) are reviewed in.{{cite book|last=Griffiths|first=R.B.|title=Phase Transitions and Critical Phenomena|volume=1|year=1972|publisher=Academic Press|location=New York|pages=7|authorlink=Robert Griffiths (physicist)|editor=C. Domb and M.S.Green|chapter=Rigorous results and theorems|title-link=Phase Transitions and Critical Phenomena}}

References