Grothendieck's connectedness theorem

In mathematics, Grothendieck's connectedness theorem,{{harvnb|Grothendieck|Raynaud|2005|loc=XIII.2.1}}{{harvnb|Lazarsfeld|2004|loc=theorem 3.3.16}} states that if A is a complete Noetherian local ring whose spectrum is k-connected and f is in the maximal ideal, then Spec(A/fA) is (k − 1)-connected. Here a Noetherian scheme is called k-connected if its dimension is greater than k and the complement of every closed subset of dimension less than k is connected.{{harvnb|Grothendieck|Raynaud|2005|loc=XIII.2.1}}

It is a local analogue of Bertini's theorem.

See also

References

{{reflist}}

Bibliography

  • {{citation

| last1 = Grothendieck

| first1 = Alexander

| authorlink1 = Alexander Grothendieck

| first2 = Michel |last2=Raynaud | authorlink2=Michel Raynaud

| title = Séminaire de Géométrie Algébrique du Bois Marie - 1962 - Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux - (SGA 2)

|series=Documents Mathématiques 4

| origyear = 1968

| edition = Updated

| year = 2005

| publisher = Société Mathématique de France

| language = French

| pages = x+208

| isbn =2-85629-169-4

}}

  • {{citation|title=Positivity in Algebraic Geometry

|first=Robert |last=Lazarsfeld | authorlink=Robert Lazarsfeld

|year=2004

|publisher=Springer

|isbn =3-540-22533-1

}}

Category:Theorems in algebraic geometry

{{abstract-algebra-stub}}