Grothendieck trace theorem

{{Short description|Extension of Lidskii's theorem}}

In functional analysis, the Grothendieck trace theorem is an extension of Lidskii's theorem about the trace and the determinant of a certain class of nuclear operators on Banach spaces, the so-called \tfrac{2}{3}-nuclear operators.{{cite book|first1=Israel|last1=Gohberg|first2=Seymour|last2=Goldberg|first3=Nahum|last3=Krupnik|title=Traces and Determinants of Linear Operators|series=Operator Theory Advances and Applications |publisher=Birkhäuser |place=Basel |date=1991 |isbn=978-3-7643-6177-8|page=102}} The theorem was proven in 1955 by Alexander Grothendieck.* {{cite book | last=Grothendieck | first=Alexander | title=Produits tensoriels topologiques et espaces nucléaires | publisher=American Mathematical Society | location=Providence | page=19| year=1955| isbn=0-8218-1216-5 | oclc=1315788 | language=fr}} Lidskii's theorem does not hold in general for Banach spaces.

The theorem should not be confused with the Grothendieck trace formula from algebraic geometry.

Grothendieck trace theorem

Given a Banach space (B,\|\cdot\|) with the approximation property and denote its dual as B'.

=2/3-nuclear operators=

Let A be a nuclear operator on B, then A is a \tfrac{2}{3}-nuclear operator if it has a decomposition of the form

A = \sum\limits_{k=1}^{\infty}\varphi_k \otimes f_k

where \varphi_k \in B and f_k \in B' and

\sum\limits_{k=1}^{\infty}\|\varphi_k\|^{2/3} \|f_k\|^{2/3} < \infty.

=Grothendieck's trace theorem=

Let \lambda_j(A) denote the eigenvalues of a \tfrac{2}{3}-nuclear operator A counted with their algebraic multiplicities. If

\sum\limits_j |\lambda_j(A)| < \infty

then the following equalities hold:

\operatorname{tr}A = \sum\limits_j |\lambda_j(A)|

and for the Fredholm determinant

\operatorname{det}(I+A) = \prod\limits_j (1+\lambda_j(A)).

See also

  • {{annotated link|Nuclear operators between Banach spaces}}

Literature

  • {{cite book|first1=Israel|last1=Gohberg|first2=Seymour|last2=Goldberg|first3=Nahum|last3=Krupnik|title=Traces and Determinants of Linear Operators|series=Operator Theory Advances and Applications |publisher=Birkhäuser|place=Basel|date=1991|isbn=978-3-7643-6177-8|page=102}}

References

{{reflist}}

{{Topological tensor products and nuclear spaces}}

{{Banach spaces}}

{{Functional analysis}}

Category:Theorems in functional analysis

Category:Topological tensor products

Category:Determinants