Group field theory
{{Short description|Quantum field theory with a Lie group base manifold}}
{{distinguish|text=group theory. This article is about group field theory as a candidate theory of quantum gravity}}
{{Beyond the Standard Model|cTopic=Quantum gravity}}
Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. Its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields). Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime.
See also
References
- [https://web.archive.org/web/20091027184638/http://relativity.livingreviews.org/Articles/lrr-2008-5/ Wayback Machine] see Sec 6.8 Dynamics: III. Group field theory
- {{cite journal |arxiv=hep-th/0505016 |doi=10.1007/s10773-005-8894-1 |title=Group Field Theory: An Overview |year=2005 |last1=Freidel |first1=L. |s2cid=119099369 |journal=International Journal of Theoretical Physics |volume=44 |issue=10 |pages=1769–1783 |bibcode=2005IJTP...44.1769F }}
- {{cite journal |arxiv=gr-qc/0607032 |last1=Oriti |first1=Daniele |title=The group field theory approach to quantum gravity |year=2006 |bibcode=2006gr.qc.....7032O }}
- {{cite journal |url=http://fqxi.org/data/documents/Oriti%20Azores%20Talk.pdf |title=The Group Field Theory Approach to Quantum Gravity: A QFT for the Microstructure of Spacetime |arxiv=0912.2441 |last1=Oriti |first1=Daniele |year=2009 }}
- {{cite journal |arxiv=1002.3592 |doi=10.1088/0264-9381/27/15/155012 |title=Linearized group field theory and power-counting theorems |year=2010 |last1=Geloun |first1=Joseph Ben |last2=Krajewski |first2=Thomas |last3=Magnen |first3=Jacques |last4=Rivasseau |first4=Vincent |journal=Classical and Quantum Gravity |volume=27 |issue=15 |page=155012 |s2cid=29020457 |bibcode=2010CQGra..27o5012B }}
- {{cite journal |arxiv=1008.0354 |doi=10.1209/0295-5075/92/60008 |title=EPRL/FK group field theory |year=2010 |last1=Ben Geloun |first1=J. |last2=Gurau |first2=R. |last3=Rivasseau |first3=V. |s2cid=119247896 |journal=Europhysics Letters |volume=92 |issue=6 |page=60008 |bibcode=2010EL.....9260008B }}
- {{cite journal |arxiv=0909.4221 |doi=10.1016/j.physletb.2009.10.042 |title=Loop quantum cosmology and spin foams |year=2009 |last1=Ashtekar |first1=Abhay |last2=Campiglia |first2=Miguel |last3=Henderson |first3=Adam |s2cid=56281948 |journal=Physics Letters B |volume=681 |issue=4 |pages=347–352 |bibcode=2009PhLB..681..347A }}
- {{cite journal |arxiv=gr-qc/0702125 |doi=10.1088/0264-9381/24/20/021 |title=3D spinfoam quantum gravity: Matter as a phase of the group field theory |year=2007 |last1=Fairbairn |first1=Winston J. |last2=Livine |first2=Etera R. |s2cid=119369221 |journal=Classical and Quantum Gravity |volume=24 |issue=20 |pages=5277–5297 |bibcode=2007CQGra..24.5277F }}
- {{cite journal |arxiv=1009.4475 |doi=10.1016/j.physrep.2011.05.002 |title=Critical overview of loops and foams |year=2011 |last1=Alexandrov |first1=Sergei |last2=Roche |first2=Philippe |s2cid=118543391 |journal=Physics Reports |volume=506 |issue=3–4 |pages=41–86 |bibcode=2011PhR...506...41A }}
- {{cite journal |arxiv=1303.3576 |doi=10.1103/PhysRevLett.111.031301 |title=Cosmology from Group Field Theory Formalism for Quantum Gravity |year=2013 |last1=Gielen |first1=Steffen |last2=Oriti |first2=Daniele |last3=Sindoni |first3=Lorenzo |s2cid=14203682 |journal=Physical Review Letters |volume=111 |issue=3 |page=031301 |pmid=23909305 |bibcode=2013PhRvL.111c1301G }}
{{quantum gravity}}
{{quantum-stub}}