Grunsky's theorem
In mathematics, Grunsky's theorem, due to the German mathematician Helmut Grunsky, is a result in complex analysis concerning holomorphic univalent functions defined on the unit disk in the complex numbers. The theorem states that a univalent function defined on the unit disc, fixing the point 0, maps every disk |z| < r onto a starlike domain for r ≤ tanh π/4. The largest r for which this is true is called the radius of starlikeness of the function.
Statement
Let f be a univalent holomorphic function on the unit disc D such that f(0) = 0. Then for all r ≤ tanh π/4, the image of the disc |z| < r is starlike with respect to 0, i.e. it is invariant under multiplication by real numbers in (0,1).
An inequality of Grunsky
If f(z) is univalent on D with f(0) = 0, then
:
Taking the real and imaginary parts of the logarithm, this implies the two inequalities
:
and
:
For fixed z, both these equalities are attained by suitable Koebe functions
:
where |w| = 1.
=Proof=
{{harvtxt|Grunsky|1932}} originally proved these inequalities based on extremal techniques of Ludwig Bieberbach. Subsequent proofs, outlined in {{harvtxt|Goluzin|1939}}, relied on the Loewner equation. More elementary proofs were subsequently given based on Goluzin's inequalities, an equivalent form of Grunsky's inequalities (1939) for the Grunsky matrix.
For a univalent function g in z > 1 with an expansion
:
Goluzin's inequalities state that
:
where the zi are distinct points with |zi| > 1 and λi are arbitrary complex numbers.
Taking n = 2. with λ1 = – λ2 = λ, the inequality implies
:
If g is an odd function and η = – ζ, this yields
:
Finally if f is any normalized univalent function in D, the required inequality for f follows by taking
:
with
Proof of the theorem
Let f be a univalent function on D with f(0) = 0. By Nevanlinna's criterion, f is starlike on |z| < r if and only if
:
for |z| < r. Equivalently
:
On the other hand, by the inequality of Grunsky above,
:
Thus if
:
the inequality holds at z. This condition is equivalent to
:
and hence f is starlike on any disk |z| < r with r ≤ tanh π/4.
References
- {{citation|last=Duren|first=P. L.|title=
Univalent functions|series=Grundlehren der Mathematischen Wissenschaften|volume= 259|publisher= Springer-Verlag|year= 1983|isbn= 0-387-90795-5|pages=95–98}}
- {{citation|last=Goluzin|first=G.M.|journal=Uspekhi Mat. Nauk|year= 1939|volume= 6|pages=26–89|title=Interior problems of the theory of univalent functions|
url= http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=8936&option_lang=eng}} (in Russian)
- {{citation|last=Goluzin|first= G. M.|title=Geometric theory of functions of a complex variable|series=Translations of Mathematical Monographs|volume=26| publisher=American Mathematical Society|year= 1969}}
- {{citation|first=A.W.|last=Goodman|title=Univalent functions|publisher=Mariner Publishing Co.|year= 1983|volume=I|isbn=0-936166-10-X}}
- {{citation|first=A.W.|last=Goodman|title=Univalent functions|publisher=Mariner Publishing Co.|year= 1983|volume=II|isbn=0-936166-11-8}}
- {{citation|first=H.|last=Grunsky|title=Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche (inaugural dissertation)|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN322068231|year=1932|volume=1|journal=SCHR. Math. Inst. U. Inst. Angew. Math. Univ. Berlin|pages=95–140|access-date=2011-12-07|archive-url=https://web.archive.org/web/20150211121500/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN322068231|archive-date=2015-02-11|url-status=dead}} (in German)
- {{citation|first=H.|last=Grunsky|title=Zwei Bemerkungen zur konformen Abbildung|journal=Jber. Deutsch. Math.-Verein.|volume= 43 |year=1934|pages=140–143|url=http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002130416}} (in German)
- {{citation|last=Hayman|first= W. K.|title=Multivalent functions|edition=2nd|series=Cambridge Tracts in Mathematics|volume=110|publisher= Cambridge University Press|year= 1994|isbn= 0-521-46026-3}}
- {{citation|last=Nevanlinna|first= R.|title=Über die konforme Abbildung von Sterngebieten|journal=Öfvers. Finska Vet. Soc. Forh. |volume=53 |year=1921|pages=1–21}}
- {{citation|last=Pommerenke|first= C.|authorlink=Christian Pommerenke|title=Univalent functions, with a chapter on quadratic differentials by Gerd Jensen|series= Studia Mathematica/Mathematische Lehrbücher|volume=15|publisher= Vandenhoeck & Ruprecht|year= 1975}}