Grunsky's theorem

In mathematics, Grunsky's theorem, due to the German mathematician Helmut Grunsky, is a result in complex analysis concerning holomorphic univalent functions defined on the unit disk in the complex numbers. The theorem states that a univalent function defined on the unit disc, fixing the point 0, maps every disk |z| < r onto a starlike domain for r ≤ tanh π/4. The largest r for which this is true is called the radius of starlikeness of the function.

Statement

Let f be a univalent holomorphic function on the unit disc D such that f(0) = 0. Then for all r ≤ tanh π/4, the image of the disc |z| < r is starlike with respect to 0, i.e. it is invariant under multiplication by real numbers in (0,1).

An inequality of Grunsky

If f(z) is univalent on D with f(0) = 0, then

:\left|\log {zf^\prime(z)\over f(z)}\right|\le \log {1+|z|\over 1-|z|}.

Taking the real and imaginary parts of the logarithm, this implies the two inequalities

:\left|{zf^\prime(z)\over f(z)}\right|\le {1+|z|\over 1-|z|}

and

:\left|\arg {zf^\prime(z)\over f(z)}\right| \le \log {1+|z|\over 1-|z|}.

For fixed z, both these equalities are attained by suitable Koebe functions

: g_w(\zeta)={\zeta\over (1-\overline{w}\zeta)^2},

where |w| = 1.

=Proof=

{{harvtxt|Grunsky|1932}} originally proved these inequalities based on extremal techniques of Ludwig Bieberbach. Subsequent proofs, outlined in {{harvtxt|Goluzin|1939}}, relied on the Loewner equation. More elementary proofs were subsequently given based on Goluzin's inequalities, an equivalent form of Grunsky's inequalities (1939) for the Grunsky matrix.

For a univalent function g in z > 1 with an expansion

: g(z) = z + b_1 z^{-1} + b_2 z^{-2} + \cdots.

Goluzin's inequalities state that

: \left|\sum_{i=1}^n\sum_{j=1}^n\lambda_i\lambda_j \log {g(z_i)-g(z_j)\over z_i-z_j}\right| \le \sum_{i=1}^n\sum_{j=1}^n \lambda_i\overline{\lambda_j}\log {z_i\overline{z_j}\over z_i\overline{z_j}-1},

where the zi are distinct points with |zi| > 1 and λi are arbitrary complex numbers.

Taking n = 2. with λ1 = – λ2 = λ, the inequality implies

: \left| \log {g^\prime(\zeta)g^\prime(\eta) (\zeta-\eta)^2\over (g(\zeta)-g(\eta))^2}\right|\le \log {|1-\zeta\overline{\eta}|^2\over (|\zeta|^2 -1 )(|\eta|^2 -1)}.

If g is an odd function and η = – ζ, this yields

: \left| \log {\zeta g^\prime(\zeta) \over g(\zeta)}\right| \le {|\zeta|^2 + 1\over |\zeta|^2 -1}.

Finally if f is any normalized univalent function in D, the required inequality for f follows by taking

: g(\zeta)=f(\zeta^{-2})^{-{1\over 2}}

with z=\zeta^{-2}.

Proof of the theorem

Let f be a univalent function on D with f(0) = 0. By Nevanlinna's criterion, f is starlike on |z| < r if and only if

: \Re {zf^\prime(z)\over f(z)} \ge 0

for |z| < r. Equivalently

:\left|\arg {zf^\prime(z)\over f(z)}\right| \le {\pi\over 2}.

On the other hand, by the inequality of Grunsky above,

: \left|\arg {zf^\prime(z)\over f(z)}\right|\le \log {1+|z|\over 1-|z|}.

Thus if

: \log {1+|z|\over 1-|z|} \le {\pi\over 2},

the inequality holds at z. This condition is equivalent to

:|z|\le \tanh {\pi\over 4}

and hence f is starlike on any disk |z| < r with r ≤ tanh π/4.

References

  • {{citation|last=Duren|first=P. L.|title=

Univalent functions|series=Grundlehren der Mathematischen Wissenschaften|volume= 259|publisher= Springer-Verlag|year= 1983|isbn= 0-387-90795-5|pages=95–98}}

  • {{citation|last=Goluzin|first=G.M.|journal=Uspekhi Mat. Nauk|year= 1939|volume= 6|pages=26–89|title=Interior problems of the theory of univalent functions|

url= http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=8936&option_lang=eng}} (in Russian)

  • {{citation|last=Goluzin|first= G. M.|title=Geometric theory of functions of a complex variable|series=Translations of Mathematical Monographs|volume=26| publisher=American Mathematical Society|year= 1969}}
  • {{citation|first=A.W.|last=Goodman|title=Univalent functions|publisher=Mariner Publishing Co.|year= 1983|volume=I|isbn=0-936166-10-X}}
  • {{citation|first=A.W.|last=Goodman|title=Univalent functions|publisher=Mariner Publishing Co.|year= 1983|volume=II|isbn=0-936166-11-8}}
  • {{citation|first=H.|last=Grunsky|title=Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche (inaugural dissertation)|url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN322068231|year=1932|volume=1|journal=SCHR. Math. Inst. U. Inst. Angew. Math. Univ. Berlin|pages=95–140|access-date=2011-12-07|archive-url=https://web.archive.org/web/20150211121500/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN322068231|archive-date=2015-02-11|url-status=dead}} (in German)
  • {{citation|first=H.|last=Grunsky|title=Zwei Bemerkungen zur konformen Abbildung|journal=Jber. Deutsch. Math.-Verein.|volume= 43 |year=1934|pages=140–143|url=http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002130416}} (in German)
  • {{citation|last=Hayman|first= W. K.|title=Multivalent functions|edition=2nd|series=Cambridge Tracts in Mathematics|volume=110|publisher= Cambridge University Press|year= 1994|isbn= 0-521-46026-3}}
  • {{citation|last=Nevanlinna|first= R.|title=Über die konforme Abbildung von Sterngebieten|journal=Öfvers. Finska Vet. Soc. Forh. |volume=53 |year=1921|pages=1–21}}
  • {{citation|last=Pommerenke|first= C.|authorlink=Christian Pommerenke|title=Univalent functions, with a chapter on quadratic differentials by Gerd Jensen|series= Studia Mathematica/Mathematische Lehrbücher|volume=15|publisher= Vandenhoeck & Ruprecht|year= 1975}}

Category:Theorems in complex analysis