HAT1

{{Short description|Protein-coding gene in the species Homo sapiens}}

{{cs1 config|name-list-style=vanc}}

{{Infobox_gene}}

Histone acetyltransferase 1, also known as HAT1, is an enzyme that, in humans, is encoded by the HAT1 gene.{{cite journal |vauthors=Verreault A, Kaufman PD, Kobayashi R, Stillman B |title=Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. |journal=Curr. Biol. |volume=8 |issue= 2 |pages= 96–108 |year= 1998 |pmid= 9427644 |doi=10.1016/S0960-9822(98)70040-5 |s2cid=201273 |doi-access=free |bibcode=1998CBio....8...96V }}{{cite web | title = Entrez Gene: histone acetyltransferase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8520| accessdate = }}

Function

The protein encoded by this gene is a type B histone acetyltransferase (HAT) that is involved in the rapid acetylation of newly synthesized cytoplasmic histones, which are, in turn, imported into the nucleus for de novo deposition onto nascent DNA chains. Histone acetylation, in particular, of histone H4, plays an important role in replication-dependent chromatin assembly. To be specific, this HAT can acetylate soluble but not nucleosomal histone H4 at lysines 5 and 12, and, to a lesser degree, histone H2A at lysine 5.

References

{{reflist}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 |s2cid=7827573 |doi-access=free }}
  • {{cite journal |vauthors=Hillier LW, Graves TA, Fulton RS, etal |title=Generation and annotation of the DNA sequences of human chromosomes 2 and 4. |journal=Nature |volume=434 |issue= 7034 |pages= 724–31 |year= 2005 |pmid= 15815621 |doi= 10.1038/nature03466 |bibcode=2005Natur.434..724H |doi-access= free }}
  • {{cite journal |vauthors=Benson LJ, Phillips JA, Gu Y, etal |title=Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair. |journal=J. Biol. Chem. |volume=282 |issue= 2 |pages= 836–42 |year= 2007 |pmid= 17052979 |doi= 10.1074/jbc.M607464200 |doi-access= free }}
  • {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |pmc=528928 |doi= 10.1101/gr.2596504 }}
  • {{cite journal |vauthors=Makowski AM, Dutnall RN, Annunziato AT |title=Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase |journal=J. Biol. Chem. |volume=276 |issue= 47 |pages= 43499–502 |year= 2001 |pmid= 11585814 |doi= 10.1074/jbc.C100549200 |doi-access= free }}
  • {{cite journal |author=Marmorstein R |title=Structure of histone acetyltransferases |journal=J. Mol. Biol. |volume=311 |issue= 3 |pages= 433–44 |year= 2001 |pmid= 11492997 |doi= 10.1006/jmbi.2001.4859 }}
  • {{cite journal |vauthors=Miyamoto N, Izumi H, Noguchi T, etal |title=Tip60 is regulated by circadian transcription factor clock and is involved in cisplatin resistance |journal=J. Biol. Chem. |volume=283 |issue= 26 |pages= 18218–26 |year= 2008 |pmid= 18458078 |doi= 10.1074/jbc.M802332200 |doi-access= free }}
  • {{cite journal |vauthors=Cheung P, Tanner KG, Cheung WL, etal |title=Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation |journal=Mol. Cell |volume=5 |issue= 6 |pages= 905–15 |year= 2000 |pmid= 10911985 |doi=10.1016/S1097-2765(00)80256-7 |doi-access=free }}
  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2002 |pmid= 12477932 |pmc=139241 |doi= 10.1073/pnas.242603899 |bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal |vauthors=Kimura K, Wakamatsu A, Suzuki Y, etal |title=Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |pmc=1356129 |doi= 10.1101/gr.4039406 }}
  • {{cite journal |vauthors=Grönroos E, Hellman U, Heldin CH, Ericsson J |title=Control of Smad7 stability by competition between acetylation and ubiquitination |journal=Mol. Cell |volume=10 |issue= 3 |pages= 483–93 |year= 2002 |pmid= 12408818 |doi=10.1016/S1097-2765(02)00639-1 |doi-access=free }}
  • {{cite journal |vauthors=Galey D, Becker K, Haughey N, etal |title=Differential transcriptional regulation by human immunodeficiency virus type 1 and gp120 in human astrocytes |journal=J. Neurovirol. |volume=9 |issue= 3 |pages= 358–71 |year= 2003 |pmid= 12775419 |doi= 10.1080/13550280390201119|s2cid=22016092 }}
  • {{cite journal |vauthors=Harrington JJ, Sherf B, Rundlett S, etal |title=Creation of genome-wide protein expression libraries using random activation of gene expression |journal=Nat. Biotechnol. |volume=19 |issue= 5 |pages= 440–5 |year= 2001 |pmid= 11329013 |doi= 10.1038/88107 |s2cid=25064683 }}

{{refend}}

{{NLM content}}