HIST1H2AC

{{Short description|Protein-coding gene in the species Homo sapiens}}

{{Infobox_gene}}

Histone H2A type 1-C is a protein that in humans is encoded by the HIST1H2AC gene.{{cite journal |vauthors=Albig W, Kioschis P, Poustka A, Meergans K, Doenecke D | title = Human histone gene organization: nonregular arrangement within a large cluster | journal = Genomics | volume = 40 | issue = 2 | pages = 314–22 |date=Apr 1997 | pmid = 9119399 | doi = 10.1006/geno.1996.4592 }}{{cite journal |vauthors=Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ | title = The human and mouse replication-dependent histone genes | journal = Genomics | volume = 80 | issue = 5 | pages = 487–98 |date=Oct 2002 | pmid = 12408966 | doi =10.1016/S0888-7543(02)96850-3 }}{{cite web | title = Entrez Gene: HIST1H2AC histone cluster 1, H2ac| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8334}}

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes.

The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6.

Cancer

HIST1H2AC gene has been observed progressively downregulated in Human papillomavirus-positive neoplastic keratinocytes derived from uterine cervical preneoplastic lesions at different levels of malignancy.{{cite journal | vauthors = Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, Garutti P, Negrini M, Tognon M, Martini F | title = Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes. | journal = J Cell Physiol | volume = 230| issue = 4 | pages = 802–812 | date = April 2015 | pmid = 25205602 | doi = 10.1002/jcp.24808| hdl = 11392/2066612 | s2cid = 24986454 | hdl-access = free }} For this reason, HIST1H2AC is likely to be associated with tumorigenesis and may be a potential prognostic marker for uterine cervical preneoplastic lesions progression.

References

{{reflist}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=Ruddy DA, Kronmal GS, Lee VK, etal |title=A 1.1-Mb transcript map of the hereditary hemochromatosis locus. |journal=Genome Res. |volume=7 |issue= 5 |pages= 441–56 |year= 1997 |pmid= 9149941 |doi= 10.1101/gr.7.5.441|doi-access= free }}
  • {{cite journal |vauthors=Albig W, Doenecke D |title=The human histone gene cluster at the D6S105 locus. |journal=Hum. Genet. |volume=101 |issue= 3 |pages= 284–94 |year= 1998 |pmid= 9439656 |doi=10.1007/s004390050630 |s2cid=38539096 }}
  • {{cite journal |vauthors=El Kharroubi A, Piras G, Zensen R, Martin MA |title=Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. |journal=Mol. Cell. Biol. |volume=18 |issue= 5 |pages= 2535–44 |year= 1998 |pmid= 9566873 |doi= 10.1128/mcb.18.5.2535| pmc=110633 }}
  • {{cite journal |vauthors=Deng L, de la Fuente C, Fu P, etal |title=Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. |journal=Virology |volume=277 |issue= 2 |pages= 278–95 |year= 2001 |pmid= 11080476 |doi= 10.1006/viro.2000.0593 |doi-access= free }}
  • {{cite journal |vauthors=Deng L, Wang D, de la Fuente C, etal |title=Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. |journal=Virology |volume=289 |issue= 2 |pages= 312–26 |year= 2001 |pmid= 11689053 |doi= 10.1006/viro.2001.1129 |doi-access= free }}
  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal |vauthors=Lusic M, Marcello A, Cereseto A, Giacca M |title=Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. |journal=EMBO J. |volume=22 |issue= 24 |pages= 6550–61 |year= 2004 |pmid= 14657027 |doi= 10.1093/emboj/cdg631 | pmc=291826 }}
  • {{cite journal |vauthors=Zhang Y, Griffin K, Mondal N, Parvin JD |title=Phosphorylation of histone H2A inhibits transcription on chromatin templates. |journal=J. Biol. Chem. |volume=279 |issue= 21 |pages= 21866–72 |year= 2004 |pmid= 15010469 |doi= 10.1074/jbc.M400099200 |doi-access=free }}
  • {{cite journal |vauthors=Aihara H, Nakagawa T, Yasui K, etal |title=Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. |journal=Genes Dev. |volume=18 |issue= 8 |pages= 877–88 |year= 2004 |pmid= 15078818 |doi= 10.1101/gad.1184604 | pmc=395847 }}
  • {{cite journal |vauthors=Wang H, Wang L, Erdjument-Bromage H, etal |title=Role of histone H2A ubiquitination in Polycomb silencing. |journal=Nature |volume=431 |issue= 7010 |pages= 873–8 |year= 2004 |pmid= 15386022 |doi= 10.1038/nature02985 |bibcode=2004Natur.431..873W |s2cid=4344378 }}
  • {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
  • {{cite journal |vauthors=Andersen JS, Lam YW, Leung AK, etal |title=Nucleolar proteome dynamics. |journal=Nature |volume=433 |issue= 7021 |pages= 77–83 |year= 2005 |pmid= 15635413 |doi= 10.1038/nature03207 |bibcode=2005Natur.433...77A |s2cid=4344740 }}
  • {{cite journal |vauthors=Hagiwara T, Hidaka Y, Yamada M |title=Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. |journal=Biochemistry |volume=44 |issue= 15 |pages= 5827–34 |year= 2005 |pmid= 15823041 |doi= 10.1021/bi047505c }}
  • {{cite journal |vauthors=Bonenfant D, Coulot M, Towbin H, etal |title=Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. |journal=Mol. Cell. Proteomics |volume=5 |issue= 3 |pages= 541–52 |year= 2006 |pmid= 16319397 |doi= 10.1074/mcp.M500288-MCP200 |doi-access= free }}
  • {{cite journal |vauthors=Cao R, Tsukada Y, Zhang Y |title=Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. |journal=Mol. Cell |volume=20 |issue= 6 |pages= 845–54 |year= 2006 |pmid= 16359901 |doi= 10.1016/j.molcel.2005.12.002 |doi-access= free }}
  • {{cite journal |vauthors=Boyne MT, Pesavento JJ, Mizzen CA, Kelleher NL |title=Precise characterization of human histones in the H2A gene family by top down mass spectrometry. |journal=J. Proteome Res. |volume=5 |issue= 2 |pages= 248–53 |year= 2006 |pmid= 16457589 |doi= 10.1021/pr050269n }}
  • {{cite journal |vauthors=Bergink S, Salomons FA, Hoogstraten D, etal |title=DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. |journal=Genes Dev. |volume=20 |issue= 10 |pages= 1343–52 |year= 2006 |pmid= 16702407 |doi= 10.1101/gad.373706 | pmc=1472908 }}

{{refend}}

{{PDB Gallery|geneid=8334}}

{{gene-6-stub}}