Hadamard three-circle theorem

In complex analysis, a branch of mathematics, the

Hadamard three-circle theorem is a result about the behavior of holomorphic functions.

Statement

Hadamard three-circle theorem: Let f(z) be a holomorphic function on the annulus r_1\leq\left| z\right| \leq r_3. Let M(r) be the maximum of |f(z)| on the circle |z|=r. Then, \log M(r) is a convex function of the logarithm \log (r). Moreover, if f(z) is not of the form cz^\lambda for some constants \lambda and c, then \log M(r) is strictly convex as a function of \log (r).

The conclusion of the theorem can be restated as

:\log\left(\frac{r_3}{r_1}\right)\log M(r_2)\leq

\log\left(\frac{r_3}{r_2}\right)\log M(r_1)

+\log\left(\frac{r_2}{r_1}\right)\log M(r_3)

for any three concentric circles of radii r_1

Proof

The three circles theorem follows from the fact that for any real a, the function Re log(zaf(z)) is harmonic between two circles, and therefore takes its maximum value on one of the circles. The theorem follows by choosing the constant a so that this harmonic function has the same maximum value on both circles.

The theorem can also be deduced directly from Hadamard's three-line theorem.{{harvnb|Ullrich|2008}}

History

A statement and proof for the theorem was given by J.E. Littlewood in 1912, but he attributes it to no one in particular, stating it as a known theorem. Harald Bohr and Edmund Landau attribute the theorem to Jacques Hadamard, writing in 1896; Hadamard published no proof.{{harvnb|Edwards|1974|loc=Section 9.3}}

See also

Notes

{{reflist}}

References

  • {{citation|first=H.M.|last=Edwards|authorlink=Harold Edwards (mathematician)|title=Riemann's Zeta Function|year=1974|publisher=Dover Publications|isbn=0-486-41740-9}}
  • {{Citation | last1=Littlewood | first1=J. E. | title=Quelques consequences de l'hypothese que la function ζ(s) de Riemann n'a pas de zeros dans le demi-plan Re(s) > 1/2. | year=1912 | journal=Les Comptes rendus de l'Académie des sciences | volume=154 | pages=263–266}}
  • E. C. Titchmarsh, The theory of the Riemann Zeta-Function, (1951) Oxford at the Clarendon Press, Oxford. (See chapter 14)
  • {{citation|title=Complex made simple|volume= 97|series= Graduate Studies in Mathematics|first=David C.|last= Ullrich|publisher=American Mathematical Society|year= 2008|isbn=978-0821844793|pages=386–387}}

{{PlanetMath attribution|id=5605|title=Hadamard three-circle theorem}}