Hadamard variation formula

{{Multiple issues|

{{Orphan|date=January 2025}}

{{No footnotes|date=January 2025}}

}}

In matrix theory, the Hadamard variation formula is a set of differential equations for how the eigenvalues of a time-varying Hermitian matrix with distinct eigenvalues change with time.

Statement

Consider the space of n\times n Hermitian matrices with all eigenvalues distinct.

Let A=A(t) be a path in the space. Let u_i, \lambda_i be its eigenpairs.

{{Math theorem

| math_statement = If A(t) is first-differentiable, then \dot{\lambda}_i=u_i^* \dot{A} u_i

If A(t) is second-differentiable, then \ddot \lambda_i=u_i^* \ddot{A} u_i+2 \sum_{j \neq i} \frac{\left|u_i^* \dot{A} u_j\right|^2}{\lambda_i-\lambda_j}

| name = Hadamard variation formula

| note = {{harvnb|Tao|2012|pages=48–49}}

}}

{{hidden begin|style=width:100%|ta1=center|border=1px #aaa solid|title=Proof}}

{{Math proof|title=Proof|proof=

Since u_i^*u_i = 1 does not change with time, taking the derivative, we find that \langle \dot u_i, u_i\rangle is purely imaginary. Now, this is due to a unitary ambiguity in the choice of u_i(t). Namely, for any first-differentiable \theta(t), we can pick v_i(t) := e^{i\theta(t)}u_i(t) instead. In that case, we have

\langle \dot v_i, v_i\rangle = \langle \dot u_i, u_i\rangle - i\dot\theta

so picking \theta such that \dot\theta = -i\langle \dot u_i, u_i\rangle, we have \langle \dot v_i, v_i\rangle = 0. Thus, WLOG, we assume that \langle \dot u_i, u_i\rangle = 0.

Take derivative of Au_i = \lambda_i u_i,

\dot{A} u_i+A \dot{u}_i=\dot{\lambda}_i u_i+\lambda_i \dot{u}_i

Now take inner product with u_i.

Taking derivative of \langle \dot u_i, u_i\rangle = 0, we get

\langle \ddot u_i, u_i\rangle = \langle u_i, \ddot u_i\rangle = -\langle \dot u_i, \dot u_i\rangle

and all terms are real.

Take derivative of \dot{A} u_i+A \dot{u}_i=\dot{\lambda}_i u_i+\lambda_i \dot{u}_i, then multiply by u_i^*, and simplify by u_i^* \dot{u}_i=0, u_i^* A=\lambda_i u_i^*, we get

u_i^* \ddot{A} u_i+2 u_i^* \dot{A} \dot{u}_i=\ddot{\lambda}_i

- Expand \dot{u}_i in the eigenbasis \left\{u_j\right\} as \dot{u}_i=\sum_{j \neq i} c_{i j} u_j. Take derivative of Au_i = \lambda_i u_i, and multiply by u_j^*A, we obtain c_{ij}=-\frac{u_j^* \dot{A} u_i}{\lambda_i-\lambda_j}.

}}{{hidden end}}Higher order generalizations appeared in {{Harvard citation|Tao|Vu|2011}}.

References

  • {{Cite journal |last=Tao |first=Terence |last2=Vu |first2=Van |date=2011 |title=Random matrices: Universality of local eigenvalue statistics |url=http://projecteuclid.org/euclid.acta/1485892530 |journal=Acta Mathematica |language=en |volume=206 |issue=1 |pages=127–204 |doi=10.1007/s11511-011-0061-3 |issn=0001-5962|arxiv=0908.1982 }}
  • {{Cite book |last=Tao |first=Terence |title=Topics in random matrix theory |date=2012 |publisher=American Mathematical Society |isbn=978-0-8218-7430-1 |series=Graduate studies in mathematics |location=Providence, R.I}}

Category:Matrix theory