Heath-Brown–Moroz constant
{{Short description|Mathematical constant}}
{{primary sources|date=August 2012}}
The Heath-Brown–Moroz constant C, named for Roger Heath-Brown and Boris Moroz, is defined as
:
where p runs over the primes.{{cite journal | last1=Heath-Brown | first1=D. R. | authorlink1=Roger Heath-Brown | last2=Moroz | first2=B. Z. | title=The density of rational points on the cubic surface X03=X1X2X3 | journal=Mathematical Proceedings of the Cambridge Philosophical Society | volume=125 | pages=385–395 | year=1999|doi=10.1017/S0305004198003089 | issue=3| bibcode=1999MPCPS.125..385H | s2cid=59947536 | url=https://ora.ox.ac.uk/objects/uuid:c0ac6ad5-577c-49a7-acdd-72b7f5865cb2 }}Finch, S. R (2003). Mathematical Constants. Cambridge, England: Cambridge University Press.
Application
This constant is part of an asymptotic estimate for the distribution of rational points of bounded height on the cubic surface X03=X1X2X3. Let H be a positive real number and N(H) the number of solutions to the equation X03=X1X2X3 with all the Xi non-negative integers less than or equal to H and their greatest common divisor equal to 1. Then
:.
References
External links
- [http://mathworld.wolfram.com/Heath-Brown-MorozConstant.html Wolfram Mathworld's article]
{{DEFAULTSORT:Heath-Brown-Moroz constant}}
Category:Mathematical constants
{{numtheory-stub}}
{{num-stub}}