Heine's identity

{{short description|Fourier expansion of a reciprocal square root}}

In mathematical analysis, Heine's identity, named after Heinrich Eduard Heine{{cite book

| last = Heine

| first = Heinrich Eduard

| title = Handbuch der Kugelfunctionen, Theorie und Andwendungen

| publisher = Physica-Verlag

| date = 1881

| place = Wuerzburg }} (See [http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=01410002&seq=&view=50&frames=0&pagenum=286 page 286]) is a Fourier expansion of a reciprocal square root which Heine presented as

\frac{1}{\sqrt{z-\cos\psi}} = \frac{\sqrt{2}}{\pi}\sum_{m=-\infty}^\infty Q_{m-\frac12}(z) e^{im\psi}

where{{cite journal | last=Cohl | first=Howard S. |author2=J.E. Tohline |author3=A.R.P. Rau |author4=H.M. Srivastava | title=Developments in determining the gravitational potential using toroidal functions | year=2000 | journal=Astronomische Nachrichten | issn=0004-6337 | volume=321 | issue=5/6 | pages=363–372 | doi=10.1002/1521-3994(200012)321:5/6<363::AID-ASNA363>3.0.CO;2-X|bibcode = 2000AN....321..363C }}

Q_{m-\frac12} is a Legendre function of the second kind, which has degree, m − {{1/2}}, a half-integer, and argument, z, real and greater than one. This expression can be generalized{{cite conference

| first = H. S.

| last = Cohl

| title = Portent of Heine's Reciprocal Square Root Identity

| book-title = 3D Stellar Evolution, ASP Conference Proceedings, held 22-26 July 2002 at University of California Davis, Livermore, California, USA. Edited by Sylvain Turcotte, Stefan C. Keller and Robert M. Cavallo

| volume = 293

| isbn = 1-58381-140-0

| year = 2003 }} for arbitrary half-integer powers as follows

(z-\cos\psi)^{n-\frac12} = \sqrt{\frac{2}{\pi}}\frac{(z^2-1)^{\frac{n}{2}}}{\Gamma(\frac12-n)}

\sum_{m=-\infty}^{\infty} \frac{\Gamma(m-n+\frac12)}{\Gamma(m+n+\frac12)}Q_{m-\frac12}^n(z)e^{im\psi},

where \scriptstyle\,\Gamma is the Gamma function.

References