Heine's identity
{{short description|Fourier expansion of a reciprocal square root}}
In mathematical analysis, Heine's identity, named after Heinrich Eduard Heine{{cite book
| last = Heine
| first = Heinrich Eduard
| title = Handbuch der Kugelfunctionen, Theorie und Andwendungen
| publisher = Physica-Verlag
| date = 1881
| place = Wuerzburg }} (See [http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=01410002&seq=&view=50&frames=0&pagenum=286 page 286]) is a Fourier expansion of a reciprocal square root which Heine presented as
where{{cite journal | last=Cohl | first=Howard S. |author2=J.E. Tohline |author3=A.R.P. Rau |author4=H.M. Srivastava | title=Developments in determining the gravitational potential using toroidal functions | year=2000 | journal=Astronomische Nachrichten | issn=0004-6337 | volume=321 | issue=5/6 | pages=363–372 | doi=10.1002/1521-3994(200012)321:5/6<363::AID-ASNA363>3.0.CO;2-X|bibcode = 2000AN....321..363C }}
is a Legendre function of the second kind, which has degree, m − {{1/2}}, a half-integer, and argument, z, real and greater than one. This expression can be generalized{{cite conference
| first = H. S.
| last = Cohl
| title = Portent of Heine's Reciprocal Square Root Identity
| book-title = 3D Stellar Evolution, ASP Conference Proceedings, held 22-26 July 2002 at University of California Davis, Livermore, California, USA. Edited by Sylvain Turcotte, Stefan C. Keller and Robert M. Cavallo
| volume = 293
| isbn = 1-58381-140-0
| year = 2003 }} for arbitrary half-integer powers as follows
\sum_{m=-\infty}^{\infty} \frac{\Gamma(m-n+\frac12)}{\Gamma(m+n+\frac12)}Q_{m-\frac12}^n(z)e^{im\psi},
where is the Gamma function.