Hermann Nicolai

{{Short description|German physicist}}

{{Primary sources|date=July 2023}}

Hermann Nicolai (born 11 July 1952 in Friedberg) is a German theoretical physicist and director emeritus at the Max Planck Institute for Gravitational Physics in Potsdam-Golm.

Education and career

At Karlsruhe Institute of Technology, Hermann Nicolai, beginning in 1971, studied physics and mathematics with a Diplom in 1975 with a doctorate in 1978 under the supervision of Julius Wess.{{cite web|title=Hermann Nicolai|website=Physics Tree|url=https://academictree.org/physics/peopleinfo.php?pid=715947}} At Heidelberg University, Nicolai was from 1978 to 1979 an assistant in theoretical physics. From 1979 to 1986, he worked at CERN in Geneva as a staff member in the theory department. In 1983 he received his habilitation at Heidelberg University. He was a professor (with civil service grade C3) of theoretical physics at Karlsruhe Institute of Technology from 1986 to 1988 and from 1988 to 1997 a professor (with civil service grade C4) of theoretical physics at the University of Hamburg. At the Max Planck Institute for Gravitational Physics, Nicolai was head of the department "Quantum Gravity and Unified Field Theories" and a director from 1997 to 2020, when he retired as director emeritus.{{cite web|title=Professor Dr. Dr. h. c. Hermann Nicolai, Curriculum Vitae|website=Max Planck Institute for Gravitational Physics (Albert Einstein Institute)|url=https://www.aei.mpg.de/300646/homepage-of-hermann-nicolai}}

He was a member of the editorial board of Communications in Mathematical Physics from 1993 to 1995. Then, from 1998 to 2003 the editor-in-chief of the journal Classical and Quantum Gravity, and from 2006 to 2011 the editor-in-chief of the journal General Relativity and Gravitation.

In 1991, Nicolai received the Otto-Klung-Award (now called the Klung Wilhelmy Science Award), in 2010 the Albert Einstein Medal, and in 2013 the Gay-Lussac-Humboldt Prize. He was appointed an honorary professor at the Humboldt University of Berlin and in 2005 at the University of Hannover.

Research

In the mid 1980s, Nicolai and Bernard de Wit developed the "N = 8 supergravity theory",{{cite journal|doi=10.1016/0550-3213(82)90120-1|title=N = 8 supergravity|year=1982|last1=De Wit|first1=B.|last2=Nicolai|first2=H.|journal=Nuclear Physics B|volume=208|issue=2|pages=323–364|bibcode=1982NuPhB.208..323D|url=https://cds.cern.ch/record/138066}} (over 700 citations) which arises from the dimensional reduction of the maximally supersymmetrical eleven-dimensional supergravity to four space-time dimensions (d = 4) and for which, from many plausible viewpoints, a maximal supersymmetry has a supergravity theory with a graviton and no particle with a spin greater than 2.

In the 2000s, Nicolai and colleagues investigated the behavior of gravitational equations close to a gravitational singularity such as the Big Bang;Nicolai and his colleagues investigated the theoretical implications of the BKL singularity introduced by Belinski, Khalatnikov, and Lifschitz in general relativity these investigation lead to models with chaotic dynamical billiards, in the case of classical general relativity theory in three dimensions. In the case of eleven-dimensional supergravity, these investigations to ten-dimensional "cosmological billiards", and the infinite-dimensional hyperbolic Kac Moody algebra E_ {10} appears as a symmetry. E_ {10} contains the largest finite-dimensional exceptional semi-simple complex Lie algebra E_8, which has been studied as a candidate for a grand unified theory (GUT].{{cite journal|doi=10.1103/PhysRevLett.86.4749|title=E10, BE10 and Arithmetical Chaos in Superstring Cosmology|year=2001|last1=Damour|first1=Thibault|author-link=Thibault Damour|last2=Henneaux|first2=Marc|author-link2=Marc Henneaux|journal=Physical Review Letters|volume=86|issue=21|pages=4749–4752|pmid=11384339|arxiv=hep-th/0012172|bibcode=2001PhRvL..86.4749D|s2cid=40345084}} Thibault Damour and Marc Henneaux were the first to publish the specific theory of arithmetical chaos in superstring cosmology providing the basis for such research. Nicolai proposed a purely algebraic description of the universe in cosmological space-time regions near the singularity (within the Planck time) using the E_ {10}-symmetry, whereby the space-time dimensions result as an emergent phenomenon.{{cite journal|doi=10.1103/PhysRevD.80.061701|title=Supersymmetric quantum cosmological billiards|year=2009|last1=Kleinschmidt|first1=Axel|last2=Koehn|first2=Michael|last3=Nicolai|first3=Hermann|journal=Physical Review D|volume=80|issue=6|page=061701|arxiv=0907.3048|bibcode=2009PhRvD..80f1701K|s2cid=36700928}}{{cite book|chapter=Chapter 6. Cosmological quantum billiards by Axel Kleinschmidt and Hermann Nicolai|title=Proceedings, Foundations of Space and Time: Reflections on Quantum Gravity|year=2009|pages=106–124|publisher=Cambridge University Press |isbn=9780521114400|chapter-url=https://books.google.com/books?id=cjPz_a5vGqcC&pg=PA106|editor1=Murugan, Jeff|editor2=Weltman, Amanda|editor-link2=Amanda Weltman|editor3=Ellis, George F. R.|editor-link3=George F. R. Ellis}} [https://arxiv.org/abs/0912.0854 arXiv.org]

Nicolai has also done research on a special role for E_ {10} in M-Theory.

He and de Wit also constructed maximally gauged (N = 16) supergravity theories in three dimensions and their symmetries.{{cite book|doi=10.22323/1.011.0016|chapter=Gauged Supergravities in Three Dimensions: A Panoramic Overview|title=Proceedings of 27th Johns Hopkins Workshop on Current Problems in Particle Theory: Symmetries and Mysteries of M Theory — PoS(jhw2003)|year=2004|last1=De Wit|first1=Bernard|last2=Nicolai|first2=H.|last3=Samtleben|first3=H.|page=016|s2cid=15349626 |doi-access=free }} [http://arxiv.org/abs/hep-th/0403014 arXiv.org] Furthermore, Nicolai and colleagues examined generalizations of the variables of loop quantum gravity to supergravity / string theory.

Selected publications

{{example farm|section|date=July 2023}}

In addition to the publications cited in the footnotes:

  • {{cite journal|doi=10.1088/0305-4470/9/9/010|title=Supersymmetry and spin systems|year=1976|last1=Nicolai|first1=H.|journal=Journal of Physics A: Mathematical and General|volume=9|issue=9|pages=1497–1506|bibcode=1976JPhA....9.1497N|hdl=11858/00-001M-0000-0013-5EC7-2|s2cid=122243667 |hdl-access=free}}
  • {{cite journal|doi=10.1016/0370-2693(80)90138-0|title=On a new characterization of scalar supersymmetric theories|year=1980|last1=Nicolai|first1=Hermann|journal=Physics Letters B|volume=89|issue=3–4|pages=341–346|bibcode=1980PhLB...89..341N|url=https://cds.cern.ch/record/133513|hdl=11858/00-001M-0000-0013-5E95-1|hdl-access=free}}
  • {{cite journal|doi=10.1016/0550-3213(87)90253-7|title=The consistency of the S7 truncation in d=11 supergravity|year=1987|last1=De Wit|first1=B.|last2=Nicolai|first2=H.|journal=Nuclear Physics B|volume=281|issue=1–2|pages=211–240|bibcode=1987NuPhB.281..211D|url=https://cds.cern.ch/record/168883|hdl=11858/00-001M-0000-0013-5DA7-E|hdl-access=free}}
  • {{cite journal|doi=10.1016/0550-3213(88)90116-2|title=On the quantum mechanics of supermembranes|year=1988|last1=De Wit|first1=B.|last2=Hoppe|first2=J.|last3=Nicolai|first3=H.|journal=Nuclear Physics B|volume=305|issue=4|pages=545–581|bibcode=1988NuPhB.305..545D|hdl=11858/00-001M-0000-0013-5D4D-7|hdl-access=free}} (over 950 citation)
  • {{cite journal|doi=10.1016/0550-3213(89)90214-9|title=The supermembrane is unstable|year=1989|last1=De Wit|first1=B.|last2=Lüscher|first2=M.|author-link2=Martin Lüscher|last3=Nicolai|first3=H.|journal=Nuclear Physics B|volume=320|issue=1|pages=135–159|bibcode=1989NuPhB.320..135D|hdl=11858/00-001M-0000-0013-5D23-3|hdl-access=free}}
  • {{cite journal|doi=10.1103/PhysRevLett.86.1686|title=Maximal Gauged Supergravity in Three Dimensions|year=2001|last1=Nicolai|first1=H.|last2=Samtleben|first2=H.|journal=Physical Review Letters|volume=86|issue=9|pages=1686–1689|pmid=11290224|arxiv=hep-th/0010076|bibcode=2001PhRvL..86.1686N|s2cid=20407583}} [http://arxiv.org/abs/hep-th/0010076 arXiv.org]
  • {{cite journal|doi=10.1103/PhysRevLett.89.221601|title=E10 and a "Small Tension Expansion" of M Theory|year=2002|last1=Damour|first1=T.|last2=Henneaux|first2=M.|last3=Nicolai|first3=H.|journal=Physical Review Letters|volume=89|issue=22|pages=221601-1–221601-4|pmid=12485059|arxiv=hep-th/0207267|bibcode=2002PhRvL..89v1601D|s2cid=15550004}} [http://arxiv.org/abs/hep-th/0207267 arXiv.org]
  • {{cite journal|doi=10.1088/0264-9381/20/9/201|title=Cosmological billiards|year=2003|last1=Damour|first1=T.|last2=Henneaux|first2=M.|last3=Nicolai|first3=H.|journal=Classical and Quantum Gravity|volume=20|issue=9|pages=R145–R200|hdl=11858/00-001M-0000-0013-522A-4|s2cid=250877925 |hdl-access=free}} [http://arxiv.org/abs/hep-th/0212256 arXiv.org]
  • {{cite journal|doi=10.1088/0264-9381/22/19/R01|title=Loop quantum gravity: An outside view|year=2005|last1=Nicolai|first1=Hermann|last2=Peeters|first2=Kasper|last3=Zamaklar|first3=Marija|journal=Classical and Quantum Gravity|volume=22|issue=19|pages=R193–R247|hdl=11858/00-001M-0000-0013-4EAC-A|s2cid=14106366|hdl-access=free}} [https://arxiv.org/abs/hep-th/0501114 arXiv.org]
  • {{cite journal|doi=10.1016/j.physletb.2007.03.023|title=Conformal symmetry and the Standard Model|year=2007|last1=Meissner|first1=Krzysztof A.|last2=Nicolai|first2=Hermann|journal=Physics Letters B|volume=648|issue=4|pages=312–317|arxiv=hep-th/0612165|bibcode=2007PhLB..648..312M|s2cid=17973378}}
  • {{cite journal|doi=10.1142/S0218271808012206|title=Symmetries, Singularities and the De-Emergence of Space|year=2008|last1=Damour|first1=Thibault|last2=Nicolai|first2=Hermann|journal=International Journal of Modern Physics D|volume=17|issue=3n04|pages=525–531|arxiv=0705.2643|bibcode=2008IJMPD..17..525D|s2cid=18836818}}
  • {{cite journal|doi=10.1007/JHEP12(2010)052|title=E7(7) symmetry in perturbatively quantized 𝓝 = 8 supergravity|year=2010|last1=Bossard|first1=Guillaume|last2=Hillmann|first2=Christian|last3=Nicolai|first3=Hermann|journal=Journal of High Energy Physics|volume=2010|issue=12|page=52|arxiv=1007.5472|bibcode=2010JHEP...12..052B|s2cid=119241453}}
  • {{cite journal|doi=10.1002/piuz.201001228|title=E10: Eine fundamentale Symmetrie der Physik? Neuer Zugang zur Quantengravitation|year=2010|last1=Nicolai|first1=Hermann|last2=Kleinschmidt|first2=Axel|journal=Physik in unserer Zeit|volume=41|issue=3|pages=134–140|bibcode=2010PhuZ...41..134N|hdl=11858/00-001M-0000-0012-69E6-E|s2cid=209833479 |hdl-access=free}}
  • {{cite journal|doi=10.1007/JHEP08(2011)074|title=Counterterms vs. Dualities|year=2011|last1=Bossard|first1=Guillaume|last2=Nicolai|first2=Hermann|journal=Journal of High Energy Physics|volume=2011|issue=8|page=74|arxiv=1105.1273|bibcode=2011JHEP...08..074B|s2cid=119181313}}
  • {{cite book|doi=10.1007/978-3-319-06349-2_18|chapter=Quantum Gravity: The View from Particle Physics|title=General Relativity, Cosmology and Astrophysics|year=2014|last1=Nicolai|first1=Hermann|pages=369–387|arxiv=1301.5481 |isbn=978-3-319-06348-5|s2cid=117589936 }} [http://arxiv.org/abs/1301.5481 Quantum gravity - the view from particle physics, Prag 2013, arXiv.org]

See also

References