Hessian polyhedron

class="wikitable" bgcolor="#ffffff" cellpadding="5" align="right" style="margin-left:10px" width="240"

!bgcolor=#e7dcc3 colspan=2|Hessian polyhedron

align=center

|colspan=2|320px
Orthographic projection
(triangular 3-edges outlined as black edges)

bgcolor=#e7dcc3|Schläfli symbol3{3}3{3}3
bgcolor=#e7dcc3|Coxeter diagram{{CDD|3node_1|3|3node|3|3node}}
bgcolor=#e7dcc3|Faces27 3{3}3 40px
bgcolor=#e7dcc3|Edges72 3{} 30px
bgcolor=#e7dcc3|Vertices27
bgcolor=#e7dcc3|Petrie polygonDodecagon
bgcolor=#e7dcc3|van Oss polygon12 3{4}2 40px
bgcolor=#e7dcc3|Shephard groupL3 = 3[3]3[3]3, order 648
bgcolor=#e7dcc3|Dual polyhedronSelf-dual
bgcolor=#e7dcc3|PropertiesRegular

In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, {{CDD|3node_1|3|3node|3|3node}}, in \mathbb{C}^3. It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual.

Coxeter named it after Ludwig Otto Hesse for sharing the Hessian configuration \left [\begin{smallmatrix} 9&4\\3&12 \end{smallmatrix}\right ] or (94123), 9 points lying by threes on twelve lines, with four lines through each point.Coxeter, Complex Regular polytopes, p.123

Its complex reflection group is 3[3]3[3]3 or {{CDD|3node|3|3node|3|3node}}, order 648, also called a Hessian group. It has 27 copies of {{CDD|3node|3|3node}}, order 24, at each vertex. It has 24 order-3 reflections. Its Coxeter number is 12, with degrees of the fundamental invariants 3, 6, and 12, which can be seen in projective symmetry of the polytopes.

The Witting polytope, 3{3}3{3}3{3}3, {{CDD|3node_1|3|3node|3|3node|3|3node}} contains the Hessian polyhedron as cells and vertex figures.

It has a real representation as the 221 polytope, {{CDD|nodes_10r|3ab|nodes|split2|node|3|node}}, in 6-dimensional space, sharing the same 27 vertices. The 216 edges in 221 can be seen as the 72 3{} edges represented as 3 simple edges.

Coordinates

Its 27 vertices can be given coordinates in \mathbb{C}^3: for (λ, μ = 0,1,2).

:(0,ωλ,−ωμ)

: (−ωμ,0,ωλ)

: (ωλ,−ωμ,0)

where \omega = \tfrac{-1+i\sqrt3}{2}.

As a Configuration

class=wikitable width=320 align=right

|160px
Hessian polyhedron with triangular 3-edges outlined as black edges, with one face outlined as blue.

|160px
One of 12 Van oss polygons, 3{4}2, in the Hessian polyhedron

Its symmetry is given by 3[3]3[3]3 or {{CDD|3node|3|3node|3|3node}}, order 648.Coxeter Regular Convex Polytopes, 12.5 The Witting polytope

The configuration matrix for 3{3}3{3}3 is:Coxeter, Complex Regular polytopes, p.132

:\left [\begin{smallmatrix}27&8&8\\3&72&3\\8&8&27\end{smallmatrix}\right ]

The number of k-face elements (f-vectors) can be read down the diagonal. The number of elements of each k-face are in rows below the diagonal. The number of elements of each k-figure are in rows above the diagonal.

class=wikitable

!L3

{{CDD|3node_1|3|3node|3|3node}}

! k-face

fkf0f1f2k-fig

!Notes

align=right

|L2

{{CDD|node_x|2|3node|3|3node}}( )

!f0

|BGCOLOR="#ffe0e0"|27

883{3}3L3/L2 = 27*4!/4! = 27
align=right

|L1L1

{{CDD|3node_1|2|node_x|2|3node}}3{ }

!f1

3BGCOLOR="#ffffe0"|7233{ }L3/L1L1 = 27*4!/9 = 72
align=right

|L2

{{CDD|3node_1|3|3node|2|node_x}}3{3}3

!f2

88BGCOLOR="#e0ffe0"|27( )L3/L2 = 27*4!/4! = 27

Images

These are 8 symmetric orthographic projections, some with overlapping vertices, shown by colors. Here the 72 triangular edges are drawn as 3-separate edges.

class=wikitable width=480

|+ Coxeter plane orthographic projections

E6
[12]

!Aut(E6)
[18/2]

!D5
[8]

!D4 / A2
[6]

valign=top align=center

|120px
(1=red,3=orange)

|120px
(1)

|120px
(1,3)

|120px
(3,9)

B6
[12/2]

!A5
[6]

!A4
[5]

!A3 / D3
[4]

valign=top align=center

|120px
(1,3)

|120px
(1,3)

|120px
(1,2)

|120px
(1,4,7)

Related complex polyhedra

class="wikitable" bgcolor="#ffffff" cellpadding="5" align="right" style="margin-left:10px" width="240"

!bgcolor=#e7dcc3 colspan=2|Double Hessian polyhedron

bgcolor=#e7dcc3|Schläfli symbol2{4}3{3}3
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|4|3node|3|3node}}
bgcolor=#e7dcc3|Faces72 2{4}3 60px
bgcolor=#e7dcc3|Edges216 {} 15px
bgcolor=#e7dcc3|Vertices54
bgcolor=#e7dcc3|Petrie polygonOctadecagon
bgcolor=#e7dcc3|van Oss polygon{6} 60px
bgcolor=#e7dcc3|Shephard groupM3 = 3[3]3[4]2, order 1296
bgcolor=#e7dcc3|Dual polyhedronRectified Hessian polyhedron, 3{3}3{4}2
bgcolor=#e7dcc3|PropertiesRegular

The Hessian polyhedron can be seen as an alternation of {{CDD|node_1|4|3node|3|3node}}, {{CDD|node_h|4|3node|3|3node}} = {{CDD|label-33|nodes_10ru|split2|node|label3}}. This double Hessian polyhedron has 54 vertices, 216 simple edges, and 72 {{CDD|node_1|4|3node}} faces. Its vertices represent the union of the vertices {{CDD|3node_1|3|3node|3|3node}} and its dual {{CDD|3node|3|3node|3|3node_1}}.

Its complex reflection group is 3[3]3[4]2, or {{CDD|3node|3|3node|4|node}}, order 1296. It has 54 copies of {{CDD|3node|3|3node}}, order 24, at each vertex. It has 24 order-3 reflections and 9 order-2 reflections. Its coxeter number is 18, with degrees of the fundamental invariants 6, 12, and 18 which can be seen in projective symmetry of the polytopes.

Coxeter noted that the three complex polytopes {{CDD|3node_1|3|3node|3||3node}}, {{CDD|node_1|4|3node|3||3node}}, {{CDD|3node_1|3|3node|4|node}} resemble the real tetrahedron ({{CDD|node_1|3|node|3|node}}), cube ({{CDD|node_1|4|node|3|node}}), and octahedron ({{CDD|node_1|3|node|4|node}}). The Hessian is analogous to the tetrahedron, like the cube is a double tetrahedron, and the octahedron as a rectified tetrahedron. In both sets the vertices of the first belong to two dual pairs of the second, and the vertices of the third are at the center of the edges of the second.Coxeter, Complex Regular Polytopes, p.127

Its real representation 54 vertices are contained by two 221 polytopes in symmetric configurations: {{CDD|nodes_10r|3ab|nodes|split2|node|3|node}} and {{CDD|nodes_01r|3ab|nodes|split2|node|3|node}}. Its vertices can also be seen in the dual polytope of 122.

=Construction=

The elements can be seen in a configuration matrix:

class=wikitable

!M3

{{CDD|node_1|4|3node|3|3node}}

! k-face

fkf0f1f2k-fig

!Notes

align=right

|L2

{{CDD|node_x|2|3node|3|3node}}( )

!f0

|BGCOLOR="#ffe0e0"|54

883{3}3M3/L2 = 1296/24 = 54
align=right

|L1A1

{{CDD|node_1|2|node_x|2|3node}}{ }

!f1

2BGCOLOR="#ffffe0"|21633{ }M3/L1A1 = 1296/6 = 216
align=right

|M2

{{CDD|node_1|4|3node|2|node_x}}2{4}3

!f2

69BGCOLOR="#e0ffe0"|72( )M3/M2 = 1296/18 = 72

= Images=

class=wikitable width=640

|+ Orthographic projections

valign=top

|160px
{{CDD|node_1|4|3node|3|3node}} polyhedron

|160px
{{CDD|node_1|4|3node|3|3node}} polyhedron with one face, 2{4}3 highlighted blue

|160px
{{CDD|node_1|4|3node|3|3node}} polyhedron with 54 vertices, in two 2 alternate color

|160px
{{CDD|label-33|nodes_10ru|split2|node|label3}} and {{CDD|label-33|nodes_01rd|split2|node|label3}}, shown here with red and blue vertices form a regular compound {{CDD|node_h3|4|3node|3|3node}}

{{-}}

= Rectified Hessian polyhedron=

class="wikitable" bgcolor="#ffffff" cellpadding="5" align="right" style="margin-left:10px" width="240"

!bgcolor=#e7dcc3 colspan=2|Rectified Hessian polyhedron

bgcolor=#e7dcc3|Schläfli symbol3{3}3{4}2
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|3node_1|3|3node|4|node}}
{{CDD|3node|3|3node_1|3|3node}} or {{CDD|label3|node_1|split1|nodes|label-33}}.
bgcolor=#e7dcc3|Faces54 3{3}3 40px
bgcolor=#e7dcc3|Edges216 3{} 30px
bgcolor=#e7dcc3|Vertices72
bgcolor=#e7dcc3|Petrie polygonOctadecagon
bgcolor=#e7dcc3|van Oss polygon9 3{4}3 40px
bgcolor=#e7dcc3|Shephard groupM3 = 3[3]3[4]2, order 1296
3[3]3[3]3, order 648
bgcolor=#e7dcc3|Dual polyhedronDouble Hessian polyhedron
2{4}3{3}3
bgcolor=#e7dcc3|PropertiesRegular

The rectification, {{CDD|3node|3|3node_1|3|3node}} doubles in symmetry as a regular complex polyhedron {{CDD|3node_1|3|3node|4|node}} with 72 vertices, 216 3{} edges, 54 3{3}3 faces. Its vertex figure is 3{4}2, and van oss polygon 3{4}3. It is dual to the double Hessian polyhedron.Coxeter, H. S. M., Regular Complex Polytopes, second edition, Cambridge University Press, (1991). p.30 and p.47

It has a real representation as the 122 polytope, {{CDD|nodes|3ab|nodes|split2|node|3|node_1}}, sharing the 72 vertices. Its 216 3-edges can be drawn as 648 simple edges, which is 72 less than 122's 720 edges.

class=wikitable width=720

|240px
{{CDD|3node_1|3|3node|4|node}} or {{CDD|3node|3|3node_1|3|3node}} has 72 vertices, 216 3-edges, and 54 {{CDD|3node_1|3|3node}} faces

|240px
{{CDD|3node_1|3|3node|4|node}} with one blue face, {{CDD|3node_1|3|3node}} highlighted

|240px
{{CDD|3node_1|3|3node|4|node}} with one of 9 van oss polygon, {{CDD|3node_1|4|3node}}, 3{4}3, highlighted

==Construction==

The elements can be seen in two configuration matrices, a regular and quasiregular form.

class=wikitable

|+ M3 = 3[3]3[4]2 symmetry

!M3

{{CDD|3node_1|3|3node|4|node}}

! k-face

fkf0f1f2k-fig

!Notes

align=right

|M2

{{CDD|node_x|2|3node|4|node}}( )

!f0

|BGCOLOR="#ffe0e0"|72

963{4}2M3/M2 = 1296/18 = 72
align=right

|L1A1

{{CDD|3node_1|2|node_x|2|node}}3{ }

!f1

3BGCOLOR="#ffffe0"|2162{ }M3/L1A1 = 1296/3/2 = 216
align=right

|L2

{{CDD|3node_1|3|3node|2|node_x}}3{3}3

!f2

88BGCOLOR="#e0ffe0"|54( )M3/L2 = 1296/24 = 54

class=wikitable

|+ L3 = 3[3]3[3]3 symmetry

!L3

{{CDD|3node|3|3node_1|3|3node}}

! k-face

fkf0f1colspan=2|f2k-fig

!Notes

align=right

|L1L1

{{CDD|3node|2|node_x|2|3node}}( )

!f0

|BGCOLOR="#ffe0e0"|72

9333{ }×3{ }L3/L1L1 = 648/9 = 72
align=right

|L1

{{CDD|node_x|2|3node_1|2|node_x}}3{ }

!f1

3BGCOLOR="#ffffe0"|21611{ }L3/L1 = 648/3 = 216
align=right

|rowspan=2|L2

{{CDD|3node|3|3node_1|2|node_x}}rowspan=2| 3{3}3

!rowspan=2|f2

88BGCOLOR="#e0ffe0"|27BGCOLOR="#e0ffe0"|*rowspan=2|( )rowspan=2|L3/L2 = 648/24 = 27
align=right{{CDD|node_x|2|3node_1|3|3node}}88BGCOLOR="#e0ffe0"|*BGCOLOR="#e0ffe0"|27

References

{{Reflist}}

  • Coxeter, H. S. M. and Moser, W. O. J.; Generators and Relations for Discrete Groups (1965), esp pp 67–80.
  • Coxeter, H. S. M.; Regular Complex Polytopes, Cambridge University Press, (1974).
  • Coxeter, H. S. M. and Shephard, G.C.; Portraits of a family of complex polytopes, Leonardo Vol 25, No 3/4, (1992), pp 239–244,

Category:Polytopes

Category:Complex analysis