Heyting arithmetic
{{Short description|Axiomatization of arithmetic}}
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism.Troelstra 1973:18 It is named after Arend Heyting, who first proposed it.
{{TOC right|limit=3}}
Axiomatization
Heyting arithmetic can be characterized just like the first-order theory of Peano arithmetic , except that it uses the intuitionistic predicate calculus for inference. In particular, this means that the double-negation elimination principle, as well as the principle of the excluded middle , do not hold. Note that to say does not hold exactly means that the excluded middle statement is not automatically provable for all propositions—indeed many such statements are still provable in and the negation of any such disjunction is inconsistent. is strictly stronger than in the sense that all -theorems are also -theorems.
Heyting arithmetic comprises the axioms of Peano arithmetic and the intended model is the collection of natural numbers . The signature includes zero "" and the successor "", and the theories characterize addition and multiplication. This impacts the logic: With , it is a metatheorem that can be defined as and so that is for every proposition . The negation of is of the form and thus a trivial proposition.
For terms, write for .
For a fixed term , the equality is true by reflexivity and a proposition is equivalent to .
It may be shown that can then be defined as . This formal elimination of disjunctions was not possible in the quantifier-free primitive recursive arithmetic . The theory may be extended with function symbols for any primitive recursive function, making also a fragment of this theory. For a total function , one often considers predicates of the form .
Theorems
=Double negations=
With explosion valid in any intuitionistic theory, if is a theorem for some , then by definition is provable if and only if the theory is inconsistent. Indeed, in Heyting arithmetic the double-negation explicitly expresses . For a predicate , a theorem of the form expresses that it is inconsistent to rule out that could be validated for some . Constructively, this is weaker than the existence claim of such a .
A big part of the metatheoretical discussion will concern classically provable existence claims.
A double-negation entails . So a theorem of the form also always gives new means to conclusively reject (also positive) statements .
==Proofs of classically equivalent statements==
Recall that the implication in can classically be reversed, and with that so can the one in . Here the distinction is between existence of numerical counter-examples versus absurd conclusions when assuming validity for all numbers. Inserting double-negations turns -theorems into -theorems. More exactly, for any formula provable in , the classically equivalent Gödel–Gentzen negative translation of that formula is already provable in . In one formulation, the translation procedure includes a rewriting of to The result means that all Peano arithmetic theorems have a proof that consists of a constructive proof followed by a classical logical rewriting. Roughly, the final step amounts to applications of double-negation elimination.
In particular, with undecidable atomic propositions being absent, for any proposition not including existential quantifications or disjunctions at all, one has .
==Valid principles and rules==
Minimal logic proves double-negation elimination for negated formulas, . More generally, Heyting arithmetic proves this classical equivalence for any Harrop formula.
And -results are well behaved as well: Markov's rule at the lowest level of the arithmetical hierarchy is an admissible rule of inference, i.e. for with free,
:
Instead of speaking of quantifier-free predicates, one may equivalently formulate this for primitive recursive predicate or Kleene's T predicate, called , resp. and .
Even the related rule is admissible, in which the tractability aspect of is not e.g. based on a syntactic condition but where the left hand side also requires .
Beware that in classifying a proposition based on its syntactic form, one ought not mistakenly assign a lower complexity based on some only classical valid equivalence.
=Excluded middle=
As with other theories over intuitionistic logic, various instances of can be proven in this constructive arithmetic. By disjunction introduction, whenever either the proposition or is proven, then is proven as well. So for example, equipped with and from the axioms, one may validate the premise for induction of excluded middle for the predicate . One then says equality to zero is decidable. Indeed, proves equality "" decidable for all numbers, i.e. . Stronger yet, as equality is the only predicate symbol in Heyting arithmetic, it then follows that, for any quantifier-free formula , where are the free variables, the theory is closed under the rule
:
Any theory over minimal logic proves for all propositions. So if the theory is consistent, it never proves the negation of an excluded middle statement.
Practically speaking, in rather conservative constructive frameworks such as , when it is understood what type of statements are algorithmically decidable, then an unprovability result of an excluded middle disjunction expresses the algorithmic undecidability of .
=Conservativity=
For simple statements, the theory does not just validate such classically valid binary dichotomies . The Friedman translation can be used to establish that 's -theorems are all proven by : For any and quantifier-free ,
:
This result may of course also be expressed with explicit universal closures . Roughly, simple statements about computable relations provable classically are already provable constructively. Although in halting problems, not just quantifier-free propositions but also -propositions play an important role, and as will be argued these can be even classically independent. Similarly, already unique existence in an infinite domain, i.e. , is formally not particularly simple.
So is -conservative over . For contrast, while the classical theory of Robinson arithmetic proves all --theorems, some simple --theorems are independent of it. Induction also plays a crucial role in Friedman's result: For example, the more workable theory obtained by strengthening with axioms about ordering, and optionally decidable equality, does prove more -statements than its intuitionistic counterpart.
The discussion here is by no means exhaustive. There are various results for when a classical theorem is already entailed by the constructive theory. Also note that it can be relevant what logic was used to obtain metalogical results. For example, many results on realizability were indeed obtained in a constructive metalogic. But when no specific context is given, stated results need to be assumed to be classical.
Unprovable statements
Independence results concern propositions such that neither they, nor their negations can be proven in a theory. If the classical theory is consistent (i.e. does not prove ) and the constructive counterpart does not prove one of its classical theorems , then that is independent of the latter. Given some independent propositions, it is easy to define more from them, especially in a constructive framework.
Heyting arithmetic has the disjunction property : For all propositions and ,{{Citation|first1=Morten|last1=Sørenson|first2=Paweł|last2=Urzyczyn|title=Lectures on the Curry-Howard Isomorphism|citeseerx = 10.1.1.17.7385 |year=1998}}, pp. 240-249
:
Indeed, this and its numerical generalization are also exhibited by constructive second-order arithmetic and common set theories such as and . It is a common desideratum for the informal notion of a constructive theory.
Now in a theory with , if a proposition is independent, then the classically trivial is another independent proposition, and vice versa. A schema is not valid if there is at least one instance that cannot be proven, which is how comes to fail. One may break by adopting an excluded middle statement axiomatically without validating either of the disjuncts, as is the case in .
More can be said: If is even classically independent, then also the negation is independent—this holds whether or not is equivalent to . Then, constructively, the weak excluded middle does not hold, i.e. the principle that would hold for all propositions is not valid. If such is , unprovability of the disjunction manifests the breakdown of -, or what amounts to an instance of for a primitive recursive function.
=Classically independent propositions=
Knowledge of Gödel's incompleteness theorems aids in understanding the type of statements that are -provable but not -provable.
The resolution of Hilbert's tenth problem provided some concrete polynomials and corresponding polynomial equations, such that the claim that the latter have a solution is algorithmically undecidable. The proposition can be expressed as
:
Certain such zero value existence claims have a more particular interpretation: Theories such as or prove that these propositions are equivalent to the arithmetized claim of the theories own inconsistency. Thus, such propositions can even be written down for strong classical set theories.
In a consistent and sound arithmetic theory, such an existence claim is an independent -proposition. Then , by pushing a negation through the quantifier, is seen to be an independent Goldbach-type- or -proposition. To be explicit, the double-negation (or ) is also independent. And any triple-negation is, in any case, already intuitionistically equivalent to a single negation.
==PA violates DP==
The following illuminates the meaning involved in such independent statements. Given an index in an enumeration of all proofs of a theory, one can inspect what proposition it is a proof of. is adequate in that it can correctly represent this procedure: there is a primitive recursive predicate expressing that a proof is one of the absurd proposition . This relates to the more explicitly arithmetical predicate above, about a polynomial's return value being zero. One may metalogically reason that if is consistent, then it indeed proves for every individual index .
In an effectively axiomatized theory, one may successively perform an inspection of each proof. If a theory is indeed consistent, then there does not exist a proof of an absurdity, which corresponds to the statement that the mentioned "absurdity search" will never halt. Formally in the theory, the former is expressed by the proposition , negating the arithmetized inconsistency claim. The equivalent -proposition formalizes the never halting of the search by stating that all proofs are not a proof of an absurdity. And indeed, in an omega-consistent theory that accurately represents provability, there is no proof that the absurdity search would ever conclude by halting (explicit inconsistency not derivable), nor—as shown by Gödel—can there be a proof that the absurdity search would never halt (consistency not derivable). Reformulated, there is no proof that the absurdity search never halts (consistency not derivable), nor is there a proof that the absurdity search does not never halt (consistency not rejectible).
To reiterate, neither of these two disjuncts is -provable, while their disjunction is trivially -provable. Indeed, if is consistent then it violates .
The -proposition expressing the existence of a proof of is a logically positive statement. Nonetheless, it is historically denoted , while its negation is a -proposition denoted by . In a constructive context, this use of the negation sign may be misleading nomenclature.
Friedman established another interesting unprovable statement, namely that a consistent and adequate theory never proves its arithmetized disjunction property.
=Unprovable classical principles=
Already minimal logic logically proves all non-contradiction claims, and in particular and . Since also , the theorem may be read as a provable double-negated excluded middle disjunction (or existence claim). But in light of the disjunction property, the plain excluded middle cannot be -provable. So one of the De Morgan's laws cannot intuitionistically hold in general either.
The breakdown of the principles and have been explained.
Now in , the least number principle is just one of many statements equivalent to the induction principle. The proof below shows how implies , and therefore why this principle also cannot be generally valid in . However, the schema granting double-negated least number existence for every non-trivial predicate, denoted , is generally valid. In light of Gödel's proof, the breakdown of these three principles can be understood as Heyting arithmetic being consistent with the provability reading of constructive logic.
Markov's principle for primitive recursive predicates does already not hold as an implication schema for , let alone the strictly stronger . Although in the form of the corresponding rules, they are admissible, as mentioned.
Similarly, the theory does not prove the independence of premise principle for negated predicates, albeit it is closed under the rule for all negated propositions, i.e. one may pull out the existential quantifier in . The same holds for the version where the existential statement is replaced by a mere disjunction.
The valid implication can be proven to hold also in its reversed form, using the disjunctive syllogism. However, the double-negation shift is not intuitionistically provable, i.e. the schema of commutativity of "" with universal quantification over all numbers. This is an interesting breakdown that is explained by the consistency of for some , as discussed in the section on Church's thesis.
==Least number principle==
Making use of the order relation on the naturals, the strong induction principle reads
:
In class notation, as familiar from set theory, an arithmetic statement is expressed as where . For any given predicate of negated form, i.e. , a logical equivalent to induction is
:
The insight is that among subclasses , the property of (provably) having no least member is equivalent to being uninhabited, i.e. to being the empty class. Taking the contrapositive results in a theorem expressing that for any non-empty subclass, it cannot consistently be ruled out that there exists a member such that there is no member smaller than :
:
In Peano arithmetic, where double-negation elimination is always valid, this proves the least number principle in its common formulation. In the classical reading, being non-empty is equivalent to (provably) being inhabited by some least member.
A binary relation "" that validates the strong induction schema in the above form is always also irreflexive: Considering or equivalently
:
for some fixed number , the above simplifies to the statement that no member of validates
More generally, if
But in general, over constructive logic, the weakening of the least number principle can not be lifted. The following example demonstrates this: For some proposition
:
This
One may ask what the least member of the class
In set theory notation,
=Anti-classical extensions=
In a computable context, for a predicate
:
also written
==Church's thesis==
Church's rule is an admissible rule in
Consider the principle in the form stating that all predicates that are decidable in the logic sense above are also decidable by a total computable function. To see how it is in conflict with excluded middle, one merely needs to define a predicate that is not computably decidable.
To this end, write
The formal Church's principles are associated with the recursive school, naturally. Markov's principle
a collection of principles that negate both
Models
=Consistency=
If a theory is consistent, then no proof is one of an absurdity. Kurt Gödel introduced the negative translation and proved that if Heyting arithmetic is consistent, then so is Peano arithmetic. That is to say, he reduced the consistency task for
The standard model of the classical first-order theory
=Set theory=
There are also constructive set theory models for full
Specifically, those theories do not require
:
That small universe of sets can be understood as the ordered collection of finite binary sequences which encode their mutual membership. For example, the
=Realizability=
For some number
In intuitionistic arithmetics, the disjunction property
:
So these properties are metalogical equivalent in Heyting arithmetic. The existence and disjunction property in fact still holds when relativizing the existence claim by a Harrop formula
Kleene, a student of Church, introduced important realizability models of the Heyting arithmetic.
In turn, his student Nels David Nelson established (in an extension of
There are also classical theorems that are not
Typed versions of realizability have been introduced by Georg Kreisel. With it he demonstrated the independence of the classically valid Markov's principle for intuitionistic theories.
See also BHK interpretation and Dialectica interpretation.
In the effective topos, already the finitely axiomizable subsystem of Heyting arithmetic with induction restricted to
=Type theory=
Type theoretical realizations mirroring inference rules based logic formalizations have been implemented in various languages.
Extensions
Heyting arithmetic has been discussed with potential function symbols added for primitive recursive functions. That theory proves the Ackermann function total.
Beyond this, axiom and formalism selection always has been a debate even within the constructivist circle. Many typed extensions of
Early on, also variants with intensional equality and Brouwerian choice sequence have been investigated.
Reverse mathematics studies of constructive second-order arithmetic have been performed.{{Cite arXiv|eprint=1804.05495|title=Constructive Reverse Mathematics
|class=math.LO|last1=Diener|first1=Hannes|year=2020}}
History
Related concepts
Heyting arithmetic should not be confused with Heyting algebras, which are the intuitionistic analogue of Boolean algebras.
See also
References
{{Reflist}}
- Ulrich Kohlenbach (2008), Applied proof theory, Springer.
- Anne S. Troelstra, ed. (1973), Metamathematical investigation of intuitionistic arithmetic and analysis, Springer, 1973.
External links
- Stanford Encyclopedia of Philosophy: "[http://plato.stanford.edu/entries/logic-intuitionistic/#IntNumTheHeyAri Intuitionistic Number Theory]" by Joan Moschovakis.
- [https://www.jstor.org/stable/2586698?seq=1 Fragments of Heyting Arithmetic] by Wolfgang Burr
{{Non-classical logic}}
Category:Constructivism (mathematics)