Horn function

In the theory of special functions in mathematics, the Horn functions (named for Jakob Horn) are the 34 distinct convergent hypergeometric series of order two (i.e. having two independent variables), enumerated by {{harvtxt|Horn|1931}} (corrected by {{harvtxt|Borngässer|1933}}). They are listed in {{harv|Erdélyi|Magnus|Oberhettinger|Tricomi|1953|loc=section 5.7.1}}. B. C. Carlson[http://dlmf.nist.gov/about/bio/BCCarlson 'Profile: Bille C. Carlson' in Digital Library of Mathematical Functions. National Institute of Standards and Technology.] revealed a problem with the Horn function classification scheme.

{{cite journal|author=Carlson, B. C.|title=The need for a new classification of double hypergeometric series|journal=Proc. Amer. Math. Soc.|year=1976|volume=56|pages=221–224|mr=0402138|doi=10.1090/s0002-9939-1976-0402138-8|doi-access=free}}

The total 34 Horn functions can be further categorised into 14 complete hypergeometric functions and 20 confluent hypergeometric functions. The complete functions, with their domain of convergence, are:

F_1(\alpha;\beta,\beta';\gamma;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{m+n}(\beta)_m(\beta')_n}{(\gamma)_{m+n}}\frac{z^mw^n}{m!n!}/;|z|<1\land|w|<1

F_2(\alpha;\beta,\beta';\gamma,\gamma';z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{m+n}(\beta)_m(\beta')_n}{(\gamma)_m(\gamma')_n}\frac{z^mw^n}{m!n!}/;|z|+|w|<1

F_3(\alpha,\alpha';\beta,\beta';\gamma;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_m(\alpha')_n(\beta)_m(\beta')_n}{(\gamma)_{m+n}}\frac{z^mw^n}{m!n!}/;|z|<1\land|w|<1

F_4(\alpha;\beta;\gamma,\gamma';z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{m+n}(\beta)_{m+n}}{(\gamma)_m(\gamma')_n}\frac{z^mw^n}{m!n!}/;\sqrt

z
+\sqrt
w
<1

G_1(\alpha;\beta,\beta';z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(\alpha)_{m+n}(\beta)_{n-m}(\beta')_{m-n}\frac{z^mw^n}{m!n!}/;|z|+|w|<1

G_2(\alpha,\alpha';\beta,\beta';z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(\alpha)_m(\alpha')_n(\beta)_{n-m}(\beta')_{m-n}\frac{z^mw^n}{m!n!}/;|z|<1\land|w|<1

G_3(\alpha,\alpha';z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(\alpha)_{2n-m}(\alpha')_{2m-n}\frac{z^mw^n}{m!n!}/;27|z|^2|w|^2+18|z||w|\pm4(|z|-|w|)<1

H_1(\alpha;\beta;\gamma;\delta;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{m-n}(\beta)_{m+n}(\gamma)_n}{(\delta)_m}\frac{z^mw^n}{m!n!}/;4|z||w|+2|w|-|w|^2<1

H_2(\alpha;\beta;\gamma;\delta;\epsilon;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{m-n}(\beta)_m(\gamma)_n(\delta)_n}{(\delta)_m}\frac{z^mw^n}{m!n!}/;1/|w|-|z|<1

H_3(\alpha;\beta;\gamma;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{2m+n}(\beta)_n}{(\gamma)_{m+n}}\frac{z^mw^n}{m!n!}/;|z|+|w|^2-|w|<0

H_4(\alpha;\beta;\gamma;\delta;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{2m+n}(\beta)_n}{(\gamma)_m(\delta)_n}\frac{z^mw^n}{m!n!}/;4|z|+2|w|-|w|^2<1

H_5(\alpha;\beta;\gamma;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{2m+n}(\beta)_{n-m}}{(\gamma)_n}\frac{z^mw^n}{m!n!}/;16|z|^2-36|z||w|\pm(8|z|-|w|+27|z||w|^2)<-1

H_6(\alpha;\beta;\gamma;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}(\alpha)_{2m-n}(\beta)_{n-m}(\gamma)_n\frac{z^mw^n}{m!n!}/;|z||w|^2+|w|<1

H_7(\alpha;\beta;\gamma;\delta;z,w)\equiv\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{(\alpha)_{2m-n}(\beta)_n(\gamma)_n}{(\delta)_m}\frac{z^mw^n}{m!n!}/;4|z|+2/|s|-1/|s|^2<1

while the confluent functions include:

  • \Phi_{1}\left(\alpha;\beta;\gamma;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m+n}(\beta)_{m}}{(\gamma)_{m+n}} \frac{x^{m} y^{n}}{m ! n !}
  • \Phi_{2}\left(\beta,\beta';\gamma;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\beta)_{m}(\beta')_{n}}{(\gamma)_{m+n}} \frac{x^{m} y^{n}}{m ! n !}
  • \Phi_{3}\left(\beta;\gamma;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\beta)_{m}}{(\gamma)_{m+n}} \frac{x^{m} y^{n}}{m ! n !}
  • \Psi_{1}\left(\alpha;\beta;\gamma,\gamma';x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m+n}(\beta)_{m}}{(\gamma)_{m}(\gamma')_{n}} \frac{x^{m} y^{n}}{m ! n !}
  • \Psi_{2}\left(\alpha;\gamma,\gamma';x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m+n}}{(\gamma)_{m}(\gamma')_{n}} \frac{x^{m} y^{n}}{m ! n !}
  • \Xi_{1}\left(\alpha,\alpha';\beta;\gamma;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m}(\alpha')_{n}(\beta)_m}{(\gamma)_{m+n}(\gamma')_{n}} \frac{x^{m} y^{n}}{m ! n !}
  • \Xi_{2}\left(\alpha;\beta;\gamma;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m}(\alpha)_{m}}{(\gamma)_{m+n}} \frac{x^{m} y^{n}}{m ! n !}
  • \Gamma_{1}\left(\alpha;\beta,\beta';x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (\alpha)_m (\beta)_{n-m}(\beta')_{m-n}\frac{x^{m} y^{n}}{m ! n !}
  • \Gamma_{2}\left(\beta,\beta';x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(\beta)_{n-m}(\beta')_{m-n}\frac{x^{m} y^{n}}{m ! n !}
  • H_{1}\left(\alpha;\beta;\delta ;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m-n}(\beta)_{m+n}}{(\delta)_m} \frac{x^{m} y^{n}}{m ! n !}
  • H_{2}\left(\alpha;\beta;\gamma;\delta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m-n}(\beta)_{m}(\gamma)_n}{(\delta)_m} \frac{x^{m} y^{n}}{m ! n !}
  • H_{3}\left(\alpha;\beta;\delta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m-n}(\beta)_{m}}{(\delta)_{m}} \frac{x^{m} y^{n}}{m ! n !}
  • H_{4}\left(\alpha;\gamma;\delta ;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m-n}(\gamma)_{n}}{(\delta)_n} \frac{x^{m} y^{n}}{m ! n !}
  • H_{5}\left(\alpha;\delta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m-n}}{(\delta)_m} \frac{x^{m} y^{n}}{m ! n !}
  • H_{6}\left(\alpha;\gamma;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\frac{(\alpha)_{2m+n}}{(\gamma)_{m+n}} \frac{x^{m} y^{n}}{m ! n !}
  • H_{7}\left(\alpha;\gamma;\delta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\frac{(\alpha)_{2m+n}}{(\gamma)_m(\delta)_n} \frac{x^{m} y^{n}}{m ! n !}
  • H_{8}\left(\alpha;\beta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (\alpha)_{2m-n}(\beta)_{n-m} \frac{x^{m} y^{n}}{m ! n !}
  • H_{9}\left(\alpha;\beta;\delta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{2m-n}(\beta)_{n}}{(\delta)_m} \frac{x^{m} y^{n}}{m ! n !}
  • H_{10}\left(\alpha;\delta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\frac{(\alpha)_{2m-n}}{(\delta)_{m}} \frac{x^{m} y^{n}}{m ! n !}
  • H_{11}\left(\alpha;\beta;\gamma;\delta;x, y\right)\equiv\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\frac{(\alpha)_{m-n}(\beta)_n(\gamma)_n}{(\delta)_m} \frac{x^{m} y^{n}}{m ! n !}

Notice that some of the complete and confluent functions share the same notation.

References

{{reflist}}

  • {{Citation | last1=Borngässer | first1=Ludwig | title=Über hypergeometrische funkionen zweier Veränderlichen | publisher=Darmstadt | series=Dissertation | year=1933}}
  • {{Citation | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol I | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | mr=0058756 | year=1953 | url=http://apps.nrbook.com/bateman/Vol1.pdf | access-date=2015-08-23 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811153220/http://apps.nrbook.com/bateman/Vol1.pdf | url-status=dead }}
  • {{Citation | last1=Horn | first1=J. | title=Hypergeometrische Funktionen zweier Veränderlichen | url=http://www.digizeitschriften.de/main/dms/img/?IDDOC=364781 | doi=10.1007/BF01455825 | year=1931 | journal= Mathematische Annalen | volume=105 | issue=1 | pages=381–407| s2cid=179177588 }}
  • J. Horn [http://www.digizeitschriften.de/resolveppn/GDZPPN002278006 Math. Ann.] 111, 637 (1933)
  • {{Citation | last1=Srivastava | first1=H. M. | last2=Karlsson | first2=Per W. | title=Multiple Gaussian hypergeometric series | publisher=Ellis Horwood Ltd. | location=Chichester | series=Ellis Horwood Series: Mathematics and its Applications | isbn=978-0-85312-602-7 |mr=834385 | year=1985}}

Category:Hypergeometric functions

{{mathanalysis-stub}}