Horndeski's theory
{{Short description|Generalized theory of gravity}}
Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion.{{clarify|date=November 2017|reason=Second order in what?}} The theory was first proposed by Gregory Horndeski in 1974{{Cite journal|last=Horndeski|first=Gregory Walter|date=1974-09-01|title=Second-order scalar-tensor field equations in a four-dimensional space|journal=International Journal of Theoretical Physics|language=en|volume=10|issue=6|pages=363–384|doi=10.1007/BF01807638|issn=0020-7748|bibcode=1974IJTP...10..363H|s2cid=122346086}} and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy.{{Cite journal|last1=Clifton|first1=Timothy|last2=Ferreira|first2=Pedro G.|last3=Padilla|first3=Antonio|last4=Skordis|first4=Constantinos|date=March 2012|title=Modified Gravity and Cosmology|journal=Physics Reports|volume=513|issue=1–3|pages=1–189|doi=10.1016/j.physrep.2012.01.001|arxiv=1106.2476|bibcode=2012PhR...513....1C|s2cid=119258154}} Horndeski's theory contains many theories of gravity, including general relativity, Brans–Dicke theory, quintessence, dilaton, chameleon particle and covariant Galileon{{Cite journal|last1=Deffayet|first1=C.|last2=Esposito-Farese|first2=G.|last3=Vikman|first3=A.|date=2009-04-03|title=Covariant Galileon|journal=Physical Review D|volume=79|issue=8|pages=084003|doi=10.1103/PhysRevD.79.084003|issn=1550-7998|arxiv=0901.1314|bibcode=2009PhRvD..79h4003D|s2cid=118855364}} as special cases.
Action
Horndeski's theory can be written in terms of an action as{{Cite journal|last1=Kobayashi|first1=Tsutomu|last2=Yamaguchi|first2=Masahide|last3=Yokoyama|first3=Jun'ichi|date=2011-09-01|title=Generalized G-inflation: Inflation with the most general second-order field equations|journal=Progress of Theoretical Physics|volume=126|issue=3|pages=511–529|doi=10.1143/PTP.126.511|issn=0033-068X|arxiv=1105.5723|bibcode=2011PThPh.126..511K|s2cid=118587117}}
with the Lagrangian densities
Here is Newton's constant, represents the matter Lagrangian, to are generic functions of and , are the Ricci scalar and Einstein tensor, is the Jordan frame metric, semicolon indicates covariant derivatives, commas indicate partial derivatives, , and repeated indices are summed over following Einstein's convention.
Constraints on parameters
Many of the free parameters of the theory have been constrained, from the coupling of the scalar field to the top field and via coupling to jets down to low coupling values with proton collisions at the ATLAS experiment.{{Cite journal|last=ATLAS Collaboration|date=2019-03-04|title=Constraints on mediator-based dark matter and scalar dark energy models using TeV collision data collected by the ATLAS detector |journal=Jhep|volume=05|page=142|arxiv=1903.01400|doi=10.1007/JHEP05(2019)142|s2cid=119182921}} and , are strongly constrained by the direct measurement of the speed of gravitational waves following GW170817.{{Cite journal|last1=Lombriser|first1=Lucas|last2=Taylor|first2=Andy|date=2016-03-16|title=Breaking a Dark Degeneracy with Gravitational Waves|journal=Journal of Cosmology and Astroparticle Physics|volume=2016|issue=3|pages=031|doi=10.1088/1475-7516/2016/03/031|issn=1475-7516|arxiv=1509.08458|bibcode=2016JCAP...03..031L|s2cid=73517974}}{{Cite journal|last1=Bettoni|first1=Dario|last2=Ezquiaga|first2=Jose María|last3=Hinterbichler|first3=Kurt|last4=Zumalacárregui|first4=Miguel|date=2017-04-14|title=Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity|journal=Physical Review D|volume=95|issue=8|pages=084029|doi=10.1103/PhysRevD.95.084029|issn=2470-0010|arxiv=1608.01982|bibcode=2017PhRvD..95h4029B|s2cid=119186001}}{{cite journal|last1=Creminelli|first1=Paolo|last2=Vernizzi|first2=Filippo|date=2017-10-16|title=Dark Energy after GW170817|journal=Physical Review Letters|volume=119|issue=25|pages=251302|arxiv=1710.05877|doi=10.1103/PhysRevLett.119.251302|pmid=29303308|bibcode=2017PhRvL.119y1302C|s2cid=206304918}}{{cite journal|last1=Sakstein|first1=Jeremy|last2=Jain|first2=Bhuvnesh|date=2017-10-16|title=Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories|journal=Physical Review Letters|volume=119|issue=25|pages=251303|arxiv=1710.05893|doi=10.1103/PhysRevLett.119.251303|pmid=29303345|bibcode=2017PhRvL.119y1303S|s2cid=39068360}}{{Cite journal|last1=Ezquiaga|first1=Jose María|last2=Zumalacárregui|first2=Miguel|date=2017-12-18|title=Dark Energy After GW170817: Dead Ends and the Road Ahead|journal=Physical Review Letters|volume=119|issue=25|pages=251304|arxiv=1710.05901|doi=10.1103/PhysRevLett.119.251304|pmid=29303304|bibcode=2017PhRvL.119y1304E|s2cid=38618360}}{{Cite news|url=https://www.sciencenews.org/article/what-detecting-gravitational-waves-means-expansion-universe|title=What detecting gravitational waves means for the expansion of the universe|last=Grossman|first=Lisa|date=2017-10-24|work=Science News|access-date=2017-11-08|language=en}}
See also
References
{{reflist}}