Humbert polynomials

{{format footnotes |date=May 2024}}

In mathematics, the Humbert polynomials π{{su|b=n,m|p=λ}}(x) are a generalization of Pincherle polynomials introduced by {{harvs|txt|last=Humbert|year=1921|authorlink=Pierre Humbert (mathematician)}} given by the generating function

:\displaystyle (1-mxt+t^m)^{-\lambda}=\sum^\infty

_{n=0}\pi^\lambda_{n,m}(x)t^n

{{harvtxt|Boas|Buck|1958|loc=p.58}}.

See also

References

  • {{Citation | last1=Boas | first1=Ralph P. | last2=Buck | first2=R. Creighton | title=Polynomial expansions of analytic functions | url=https://books.google.com/books?id=eihMuwkh4DsC | publisher=Springer-Verlag | location=Berlin, New York | journal=Ergebnisse der Mathematik und Ihrer Grenzgebiete |series=Neue Folge | mr=0094466 | year=1958 | volume=19| isbn=978-0-387-03123-1 }}
  • {{Citation | last1=Humbert | first1=Pierre | title=Some extensions of Pincherle's Polynomials | doi=10.1017/S0013091500035756 | year=1921 | journal=Proceedings of the Edinburgh Mathematical Society | volume=39 | pages=21–24| doi-access=free }}

Category:Polynomials

{{polynomial-stub}}