Hydrolysis constant

The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.

Metal hydrolysis and associated equilibrium constant values

The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:

:p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+

and the corresponding formation constant as:

:\beta_{pq} = \frac{[M_p(OH)_q^{(pz-q)}][H^+]^q}{[M^{z+}]^p}

and associated equilibria can be written as:

:MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O

:MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH

:p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O

= Aluminium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=121}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=757–797}}

!Hummel and Thoenen, 2023{{Cite book |last=Hummel |first=W. |title=Technical Report 21-03. The PSI Chemical Thermodynamic Database 2020 |last2=Thoenen |first2=T. |publisher=NAGRA |year=2023 |location=Wettingen |pages=252–259}}

Al3+ + H2O ⇌ AlOH2+ + H+

|–4.97

|−4.98 ± 0.02

|−4.98 ± 0.02

Al3+ + 2 H2O ⇌ Al(OH)2+ + 2 H+

|–9.3

|−10.63 ± 0.09

|−10.63 ± 0.09

Al3+ + 3 H2O ⇌ Al(OH)3 + 3 H+

|–15.0

|−15.66 ± 0.23

|−15.99 ± 0.23

Al3+ + 4 H2O ⇌ Al(OH)4 + 4 H+

|–23.0

|−22.91 ± 0.10

|−22.91 ± 0.10

2 Al3+ + 2 H2O ⇌ Al2(OH)24+ + 2 H+

|–7.7

|−7.62 ± 0.11

|−7.62 ± 0.11

3 Al3+ + 4 H2O ⇌ Al3(OH)45+ + 4 H+

|–13.94

|−14.06 ± 0.22

|−13.90 ± 0.12

13 Al3+ + 28 H2O ⇌ Al13O4(OH)247+ + 32 H+

|–98.73

|−100.03 ± 0.09

|−100.03 ± 0.09

α-Al(OH)3(s) + 3 H+ ⇌ Al3+ + 3 H2O

|8.5

|7.75 ± 0.08

|7.75 ± 0.08

γ-AlOOH(s) + 3 H+ ⇌ Al3+ + 2 H2O

|

|7.69 ± 0.15

|9.4 ± 0.4

= Americium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!NIST46

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=407–414}}

!Grenthe et al, 2020

Am3+ + H2O ⇌ Am(OH)2+ + H+

|–6.5 ± 0.1

|–7.22 ± 0.03

|–7.2 ± 0.5

Am3+ + 2 H2O ⇌ Am(OH)2+ + 2 H+

|–14.1 ± 0.3

|–14.9 ± 0.2

|–15.1 ± 0.7

Am3+ + 3 H2O ⇌ Am(OH)3 + 3 H+

|–25.7

|–26.0 ± 0.2

|–26.2 ± 0.5

Am3+ + 3 H2O ⇌ Am(OH)3(am) + 3 H+

|–16.9 ± 0.1

|–16.9 ± 0.8

|–16.9 ± 0.8

Am3+ + 3 H2O ⇌ Am(OH)3(cr) + 3 H+

|–15.2

|–15.62 ± 0.04

|–15.6 ± 0.6

= Americium(V) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=414}}

!Grenthe et al, 2020

AmO2+ + H2O ⇌ AmO2(OH) + H+

|–10.7 ± 0.2

|

AmO2+ + 2 H2O ⇌ AmO2(OH)2 + 2 H+

|–22.9 ± 0.7

|

AmO2+ + H2O ⇌ AmO2(OH)(am) + H+

|–5.4 ± 0.4

|–5.3 ± 0.5

= Antimony(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=375}}

!Lothenbach et al., 1999;{{Cite book |last=Lothenbach |first=B. |title=Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. TN8400 99-011 |last2=Ochs |first2=M. |last3=Wanner |first3=H. |last4=Yui |first4=M. |publisher=Japan Nuclear Cycle Development Institute (JNC) |year=1999}}

Kitamura et al., 2010{{Cite book |last=Kitamura |first=A. |title=JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024 |last2=Fujiwara |first2=K. |last3=Doi |first3=R. |last4=Yoshida |first4=Y. |last5=Mihara |first5=M. |last6=Terashima |first6=M. |last7=Yui |first7=M. |publisher=Japan Atomic Energy Agency |year=2010}}

!Filella and May, 2003{{Cite journal |last=Filella |first=M. |last2=May |first2=P.M. |date=2003 |title=Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. |journal=Geochim. Cosmochim. Acta |volume=67 |pages=4013–4031 |doi=10.1016/S0016-7037(03)00095-4}}

Sb(OH)3 + H+ ⇌ Sb(OH)2+ + H2O

|1.41

| 1.30

| 1.371

Sb(OH)3 + H2O ⇌ Sb(OH)4 + H+

|‒11.82

|‒11.93

|‒11.70

0.5 Sb2O3(s) + 1.5 H2O ⇌ Sb(OH)3

|‒4.24

|

|

Sb2O3(rhombic,s) + 3 H2O ⇌ 2 Sb(OH)3

|

|‒8.72

|‒10.00

Sb2O3(cubic,s) + 3 H2O ⇌ 2 Sb(OH)3

|

|

|‒11.40

=Antimony(V)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Lothenbach et al., 1999; Kitamura et al., 2010

Sb(OH)5 + H2O ⇌ Sb(OH)6 + H+

|‒2.72

| ‒2.72

12 Sb(OH)5 + 4 H2O ⇌ Sb12(OH)644‒ + 4 H+

|20.34

|20.34

12 Sb(OH)5 + 5 H2O ⇌ Sb12(OH)655‒ + 5 H+

|16.72

|16.72

12 Sb(OH)5 + 6 H2O ⇌ Sb12(OH)666‒ + 6 H+

|11.89

|11.89

12 Sb(OH)5 + 7 H2O ⇌ Sb12(OH)677‒ + 7 H+

|6.07

|6.07

0.5 Sb2O5(s) + 2.5 H2O ⇌ Sb(OH)5

|‒3.7

|

Sb2O5(am) + 5 H2O ⇌ 2 Sb(OH)5

|

|‒7.400

=Arsenic(III)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=370}}

!Nordstrom and Archer, 2003{{Cite book |last=Nordstrom |first=D.K. |title=Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. |last2=Archer |first2=D. |publisher=Kluwer Academic Publishers |year=2003 |editor-last=Welch |editor-first=AH |location=Amsterdam |pages=1‒25 |doi=10.1007/0-306-47956-7_1 |editor-last2=Stollenwerk |editor-first2=KG}}

!Nordstrom et al., 2014{{Cite journal |last=Nordstrom |first=D.K. |last2=Majzlan |first2=J. |last3=Königsberger |first3=E. |date=2014 |title=Thermodynamic properties for As minerals & aqueous species |journal=Reviews in Mineralogy & Geochemistry |volume=79 |pages=217‒255 |doi=10.2138/rmg.2014.79.4}}

As(OH)4 + H+ ⇌ As(OH)3 + H2O

|9.29

| 9.17

| 9.24 ± 0.02

=Arsenic(V)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer

!Khodakovsky et al. (1968){{Cite journal |last=Khodakovsky |first=I.L. |last2=Ryzhenko |first2=B.N. |last3=Naumov |first3=G.B. |date=1968 |title=Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution) |journal=Geokhimiya |volume=12 |pages=1486‒ 1503, 1968}}

!Nordstrom and Archer, 2003

!Nordstrom et al., 2014

H2AsO4 + H+ ⇌ H3AsO4

|2.24

|2.21

| 2.26 ± 0.078

| 2.25 ± 0.04

HAsO42‒ + H+ ⇌ H2AsO4

|

|6.93

|6.99 ± 0.1

|6.98 ± 0.11

AsO43‒ + H+ ⇌ HAsO42‒

|

|11.51

|11.80 ± 0.1

|11.58 ± 0.05

HAsO42‒ + 2 H+ ⇌H3AsO4

|9.20

|

|

|

AsO43‒ + 3 H+ ⇌ H3AsO4

|20.70

|

|

|

=Barium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=103}}

!Nordstrom et al., 1990{{Cite book |last=Nordstrom |first=D.K. |title=Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II |last2=Plummer |first2=L.N. |last3=Langmuir |first3=D. |last4=Busenberg |first4=E. |last5=May |first5=H.M. |last6=Jones |first6=B.F. |last7=Parkhurst |first7=D.L. |publisher=ACS |year=1990 |editor-last=Melchior |editor-first=D.C. |location=Washington, DC |pages=398–446 |editor-last2=Basset |editor-first2=R.L.}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |location=New York |pages=213–217}}

Ba2+ + H2O ⇌ BaOH+ + H+

| –13.47

| –13.47

| –13.32 ± 0.07

= Berkelium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=419–422}}

Bk3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+

| –13.5 ± 1.0

= Beryllium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=95}}

Be2+ + H2O ⇌ BeOH+ + H+

| –5.10

Be2+ + 2 H2O ⇌ Be(OH)2 + 2 H+

|–23.65

Be2+ + 3 H2O ⇌ Be(OH)3 + 3 H+

|–23.25

Be2+ + 4 H2O ⇌ Be(OH)42– + 4 H+

|–37.42

2 Be2+ + H2O ⇌ Be2OH3+ + H+

|–3.97

3 Be2+ + 3 H2O ⇌ Be3(OH)33+ + 3 H+

|–8.92

6 Be2+ + 8 H2O ⇌ Be6(OH)84+ + 8 H+

|–27.2

α-Be(OH)2(cr) + 2 H+ ⇌ Be2+ + 2 H2O

|6.69

=Bismuth=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=383}}

!Lothenbach et

al., 1999

!NIST46{{Cite book |last=NIST46 |url=https://www.nist.gov/srd/nist46 |title=NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0.}}

!Kitamura et

al., 2010

!Brown and

Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=874–884}}

Bi3+ + H2O ⇌ BiOH2+ + H+

| –1.0

|–0.92

|–1.1

|–0.920

|–0.92 ± 0.15

Bi3+ + 2 H2O ⇌ Bi(OH)2+ + 2 H+

|(–4)

|–2.56

|–4.5

|–2.560 ± 1.000

|–2.59 ± 0.26

Bi3+ + 3 H2O ⇌ Bi(OH)3 + 3 H+

|–8.86

|–5.31

|–9.0

|–8.940 ± 0.500

|–8.78 ± 0.20

Bi3+ + 4 H2O ⇌ Bi(OH)4 + 4 H+

|–21.8

|–18.71

|–21.2

|–21.660 ± 0.870

|–22.06 ± 0.14

3 Bi3+ + 4 H2O ⇌ Bi3(OH)45+ + 4 H+

|

|–0.80

|

|–0.800

|

6 Bi3+ + 12 H2O ⇌ Bi6(OH)126+ + 12 H+

|

|1.34

|

|1.340

|0.98 ± 0.13

9 Bi3+ + 20 H2O = Bi9(OH)207+ + 20 H+

|

|–1.36

|

|–1.360

|

9 Bi3+ + 21 H2O = Bi9(OH)216+ + 21 H+

|

|–3.25

|

|–3.250

|

9 Bi3+ + 22 H2O = Bi9(OH)225+ + 22 H+

|

|–4.86

|

|–4.860

|

Bi(OH)3(am) + 3 H+ = Bi3+ + 3 H2O

|

|

|

|31.501 ± 0.927

|

α-Bi2O3(cr) + 6 H+ = 2 Bi3+ + 3 H2O

|

|0.76

|

|

|

BiO1.5(s, α) + 3 H+ = Bi3+ + 1.5 H2O

|3.46

|

|

|31.501 ± 0.927

|2.88 ± 0.64

=Boron=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=111}}

!NIST46

B(OH)3 + H2O ⇌ Be(OH)4+ + H+

| –9.236

|–9.236 ± 0.002

2 B(OH)3 ⇌ B2(OH)5 + H+

|–9.36

|–9.306

3 B(OH)3 ⇌ B3O3(OH)4 + H+ + 2 H2O

|–7.03

|–7.306

4 B(OH)3 ⇌ B4O5(OH)42– + 2 H+ + 3 H2O

|–16.3

|–15.032

=Cadmium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=301}}

!Powell et al., 2011{{Cite journal |last=Powell |first=K.J. |last2=Brown |first2=P.L. |last3=Byrne |first3=R.H. |last4=Gajda |first4=T. |last5=Hefter |first5=G. |last6=Leuz |first6=A.-K. |last7=Sjöberg |first7=S. |last8=Wanner |first8=H. |date=2011 |title=Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report) |journal=Pure Appl. Chem. |volume=83 |pages=1163–1214 |doi=10.1351/PAC-REP-10-08-09|doi-access=free }}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=730–738}}

Cd2+ + H2O ⇌ CdOH+ + H+

| −10.08

| –9.80 ± 0.10

| −9.81 ± 0.10

Cd2+ + 2 H2O ⇌ Cd(OH)2 + 2 H+

|–20.35

|–20.19 ± 0.13

|−20.6 ± 0.4

Cd2+ + 3 H2O ⇌ Cd(OH)3 + 3 H+

|<–33.3

|–33.5 ± 0.5

|−33.5 ± 0.5

Cd2+ + 4 H2O ⇌ Cd(OH)42– + 4 H+

|–47.35

|–47.28 ± 0.15

|−47.25 ± 0.15

2 Cd2+ + H2O ⇌ Cd2OH3+ + H+

|–9.390

|–8.73 ± 0.01

|−8.74 ± 0.10

4 Cd2+ + 4 H2O ⇌ Cd4(OH)44+ + H+

|–32.85

|

|

Cd(OH)2(s) ⇌ Cd2+ + 2 OH

|

|–14.28 ± 0.12

|

Cd(OH)2(s) + 2 H+ ⇌ Cd2+ + 2 H2O

|13.65

|13.72 ± 0.12

|13.71 ± 0.12

=Calcium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Nordstrom et al., 1990

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |location=Weinheim, Germany |pages=195–210}}

Ca2+ + H2O ⇌ CaOH+ + H+

| –12.85

| –12.78

| –12.57 ± 0.03

Ca(OH)2(cr) + 2 H+ ⇌ Ca2+ + 2 H2O

|22.80

|22.8

|22.75 ± 0.02

= Californium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016

Cf3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+

| –13.0 ± 1.0

= Cerium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=137}}

!NIST46

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=135–145}}

Ce3+ + H2O ⇌ CeOH2+ + H+

| –8.3

| –8.3

| –8.31 ± 0.03

2 Ce3+ + 2 H2O ⇌ Ce2(OH)24+ + 2 H+

|

|

|–16.0 ± 0.2

3 Ce3+ + 5 H2O ⇌ Ce3(OH)54+ + 5 H+

|

|

|–34.6 ± 0.3

Ce(OH)3(s) + 3 H+ ⇌ Ce3+ + 3 H2O

|

|

|18.5 ± 0.5

Ce(OH)3(s) ⇌ Ce3+ + 3 OH

|

|–22.1 ± 0.9

|

=Chromium(II)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):

class="wikitable"

|+

!Reaction

!NIST46

!Ball and Nordstrom, 1988{{Cite journal |last=Ball |first=J.W. |last2=Nordstrom |first2=D.K. |date=1998 |title=Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides and hydroxides. |url=https://doi.org/10.1021/je980080a |journal=J. Chem. Eng. Data |volume=43 |pages=895–918}}

Cr2+ + H2O ⇌ CrOH+ + H+

| –5.5

|

Cr(OH)2(s) ⇌ Cr2+ + 2 OH

|

|–17 ± 0.02

= Chromium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=220}}

!Rai et al., 1987{{Cite journal |last=Rai |first=D. |last2=Sass |first2=B.M. |last3=Moore |first3=D.A. |date=1987 |title=Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide |url=https://doi.org/10.1021/ic00250a002 |journal=Inorg. Chem. |volume=26 |pages=345–349}}

!Ball and Nordstrom, 1988

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=541–555}}

Cr3+ + H2O ⇌ CrOH2+ + H+

| –4.0

| –3.57 ± 0.08

|

| –3.60 ± 0.07

Cr3+ + 2 H2O ⇌ Cr(OH)2+ + 2 H+

|–9.7

|–9.84

|

|–9.65 ± 0.20

Cr3+ + 3 H2O ⇌ Cr(OH)3 + 3 H+

|–18

|–16.19

|

|–16.25 ± 0.19

Cr3+ + 4 H2O ⇌ Cr(OH)4 + 4 H+

|–27.4

|–27.65 ± 0.12

|

|–27.56 ± 0.21

2 Cr3+ + 2 H2O ⇌ Cr2(OH)24+ + 2 H+

|–5.06

|–5.0

|

|–5.29 ± 0.16

3 Cr3+ + 4 H2O ⇌ Cr3(OH)45+ + 4 H+

|–8.15

|–10.75 ± 0.15

|

|–9.10 ± 0.14

Cr(OH)3(s) + 3 H+ ⇌ Cr3+ + 3 H2O

|12

|

|9.35

|9.41 ± 0.17

Cr2O3(s) + 6 H+ ⇌ 2 Cr3+ + 3 H2O

|

|

|8.52

|

CrO1.5(s) + 3 H+ ⇌ Cr3+ + 1.5 H2O

|

|

|

|7.83 ± 0.10

= Chromium(VI) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=216}}

!Ball and Nordstrom, 1998

CrO42– + H+ ⇌ HCrO4

| 6.51

| 6.55 ± 0.04

HCrO4 + H+ ⇌ H2CrO4

|–0.20

|

CrO42– + 2 H+ ⇌ H2CrO4

|

|6.31

2 HCrO4 ⇌ Cr2O72– + H2O

|1.523

|

2 CrO42– + 2 H+ ⇌ Cr2O72– + H2O

|

|14.7 ± 0.1

= Cobalt(II) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=241}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=620–628}}

Co2+ + H2O ⇌ CoOH+ + H+

| –9.65

| −9.61 ± 0.17

Co2+ + 2 H2O ⇌ Co(OH)2 + 2 H+

|–18.8

|−19.77 ± 0.11

Co2+ + 3 H2O ⇌ Co(OH)3 + 3 H+

|–31.5

|−32.01 ± 0.33

Co2+ + 4 H2O ⇌ Co(OH)42– + 4 H+

|–46.3

|

2 Co2+ + H2O ⇌ Co2(OH)3+ + H+

|–11.2

|

4 Co2+ + 4 H2O ⇌ Co4(OH)44+ + 4H+

|–30.53

|

Co(OH)2(s) + 2 H+ ⇌ Co2+ + 2 H2O

|12.3

|13.24 ± 0.12

CoO(s) + 2 H+ ⇌ Co2+ + H2O

|

|13.71 ± 0.10

= Cobalt(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=628−632}}

Co3+ + H2O ⇌ CoOH2+ + H+

| −1.07 ± 0.11

= Copper(I) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=650–702}}

Cu+ + H2O ⇌ CuOH + H+

| –7.8 ± 0.4

Cu+ + 2 H2O ⇌ Cu(OH)2 + 2 H+

|–18.6 ± 0.6

= Copper(II) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Messmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=274}}

!NIST46

!Plyasunova et al., 1997{{Cite journal |last=Plyasunova |first=N.V. |last2=Wang |first2=M. |last3=Zhang |first3=Y. |last4=Muhammed |first4=M. |title=Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K |url=https://doi.org/10.1016/S0304-386X(96)00073-4 |journal=Hydrometalurgy |publication-date=1997 |volume=45 |pages=37–51}}

!Powell et al., 2007{{Cite journal |last=Powell |first=K.J. |last2=Brown |first2=P.L. |last3=Byrne |first3=R.H. |last4=Gajda |first4=T. |last5=Hefter |first5=G. |last6=Sjöberg |first6=S. |last7=Wanne |first7=H. |title=Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+ + OH, Cl, CO32–, SO42–, and PO43– systems. |url=http://dx.doi.org/10.1002/chin.200740221 |journal=Pure Appl. Chem. |volume=79 |pages=895–950 |via=2007}}

!Brown and Ekberg, 2016

Cu2+ + H2O ⇌ CuOH+ + H+

|< –8

|–7.7

|–7.97 ± 0.09

|–7.95 ± 0.16

| –7.64 ± 0.17

Cu2+ + 2 H2O ⇌ Cu(OH)2 + 2 H+

|(< –17.3)

|–17.3

|–16.23 ± 0.15

|–16.2 ± 0.2

|–16.24 ± 0.03

Cu2+ + 3 H2O ⇌ Cu(OH)3 + 3 H+

|(< –27.8)

|–27.8

|–26.63 ± 0.40

|–26.60 ± 0.09

|–26.65 ± 0.13

Cu2+ + 4 H2O ⇌ Cu(OH)42– + 4 H+

|–39.6

|–39.6

|–39.73 ± 0.17

|–39.74 ± 0.18

|–39.70 ± 0.19

2 Cu2+ + H2O ⇌ Cu2(OH)3+ + H+

|

|

|–6.71 ± 0.30

|–6.40 ± 0.12

|–6.41 ± 0.17

2 Cu2+ + 2 H2O ⇌ Cu2(OH)22+ + 2 H+

|–10.36

|–10.3

|–10.55 ± 0.17

|–10.43 ± 0.07

|–10.55 ± 0.02

3 Cu2+ + 4 H2O ⇌ Cu3(OH)42+ + 4 H+

|

|

|–20.95 ± 0.30

|–21.1 ± 0.2

|–21.2 ± 0.4

CuO(s) + 2 H+ ⇌ Cu2+ + H2O

|7.62

|

|7.64 ± 0.06

|7.64 ± 0.06

|7.63 ± 0.05

Cu(OH)2(s) + 2 H+ ⇌ Cu2+ + 2 H2O

|

|

|

|8.67 ± 0.05

|8.68 ± 0.10

= Curium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=415−420}}

Cm3+ + H2O ⇌ Cm(OH)2+ + H+

|−7.66 ± 0.07

Cm3+ + 2 H2O ⇌ Cm(OH)2+ + 2 H+

|−15.9 ± 0.1

Cm3+ + 3 H2O ⇌ Cm(OH)3(s) + 3 H+

|−13.9 ± 0.4

= Dysprosium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=247, 250−251 and 290−292}}

Dy3+ + H2O ⇌ DyOH2+ + H+

|−8.0

|−7.53 ± 0.14

Dy3+ + 2 H2O ⇌ Dy(OH)2+ + 2 H+

|(–16.2)

|

Dy3+ + 3 H2O ⇌ Dy(OH)3 + 3 H+

|(–24.7)

|

Dy3+ + 4 H2O ⇌ Dy(OH)4 + 4 H+

|–33.5

|

2 Dy3+ + 2 H2O ⇌ Dy2(OH)24+ + 2 H+

|

|−13.76 ± 0.20

3 Dy3+ + 5 H2O ⇌ Dy3(OH)54+ + 5 H+

|

|−30.6 ± 0.3

Dy(OH)3(s) + 3 H+ ⇌ Dy3+ + 3 H2O

|15.9

|16.26 ± 0.30

Dy(OH)3(c) + OH ⇌ Dy(OH)4

|−3.6

|

Dy(OH)3(c) ⇌ Dy(OH)3

|−8.8

|

= Erbium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=247, 250−251 and 295−297}}

Er3+ + H2O ⇌ ErOH2+ + H+

|−7.9

|−7.46 ± 0.09

Er3+ + 2 H2O ⇌ Er(OH)2+ + 2 H+

|(−15.9)

|

Er3+ + 3 H2O ⇌ Er(OH)3 + 3 H+

|(−24.2)

|

Er3+ + 4 H2O ⇌ Er(OH)4 + 4 H+

|−32.6

|

2 Er3+ + 2 H2O ⇌ Er2(OH)24+ + 2 H+

|−13.65

|−13.50 ± 0.20

3 Er3+ + 5 H2O ⇌ Er3(OH)54+ + 5 H+

|<−29.3

|−31.0 ± 0.3

Er(OH)3(s) + 3 H+ ⇌ Er3+ + 3 H2O

|15.0

|15.79 ± 0.30

Er(OH)3(c) + OH ⇌ Er(OH)4

|−3.6

|

Er(OH)3(c) ⇌ Er(OH)3

|~ −9.2

|

=Europium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!NIST46

!Hummel et al., 2002

!Brown and Ekberg, 2016

Eu3+ + H2O ⇌ EuOH2+ + H+

| –7.8

|

|–7.64 ± 0.04

| –7.66 ± 0.05

Eu3+ + 2 H2O ⇌ Eu(OH)2+ + 2 H+

|

|

|–15.1 ± 0.2

|

Eu3+ + 3 H2O ⇌ Eu(OH)3 + 3 H+

|

|

|–23.7 ± 0.1

|

Eu3+ + 4 H2O ⇌ Eu(OH)4 + 4 H+

|

|

|–36.2 ± 0.5

|

2 Eu3+ + 2 H2O ⇌ Eu2(OH)24+ + 2 H+

|

|

| -

|–14.1 ± 0.2

3 Eu3+ + 5 H2O ⇌ Eu3(OH)54+ + 5 H+

|

|

| -

| –32.0 ± 0.3

Eu(OH)3(s) + 3 H+ ⇌ Eu3+ + 3 H2O

| 17.5

|

|17.6 ± 0.8 (am)

14.9 ± 0.3 (cr)

| 16.48 ± 0.30

Eu(OH)3(s) ⇌ Eu3+ + 3 OH

|

|–24.5 ± 0.7 (am)

–26.5 (cr)

|

|

= Gadolinium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=284–287}}

Gd3+ + H2O ⇌ GdOH2+ + H+

| –8.0

| –7.87 ± 0.05

Gd3+ + 2 H2O ⇌ Gd(OH)2+ + 2 H+

| (–16.4)

|

Gd3+ + 3 H2O ⇌ Gd(OH)3 + 3 H+

| (–25.2)

|

Gd3+ + 4 H2O ⇌ Gd(OH)4 + 4 H+

| –34.4

|

2 Gd3+ + 2 H2O ⇌ Gd2(OH)24+ + 2 H+

|

|–14.16 ± 0.20

3 Gd3+ + 5 H2O ⇌ Gd3(OH)54+ + 5 H+

|

| –33.0 ± 0.3

Gd(OH)3(s) + 3 H+ ⇌ Gd3+ + 3 H2O

| 15.6

| 17.20 ± 0.48

Gd(OH)3(c) + OH ⇌ Gd(OH)4

| –4.8

|

Gd(OH)3(c) ⇌ Gd(OH)3

| –9.6

|

= Gallium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=319}}

!Smith et al., 2003{{Cite book |last=Smith |first=R.M. |title=NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46 |last2=Martell |first2=A.E. |last3=Motekaitis |first3=R.J. |publisher=National Institute of Standards, U.S. Dept. of Commerce |year=2003 |location=Gaithersburg, MD, USA}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |location=Weinheim, Germany |pages=797–812}}

Ga3+ + H2O ⇌ GaOH2+ + H+

| –2.6

| –2.897

| –2.74

Ga3+ + 2 H2O ⇌ Ga(OH)2+ + 2 H+

| –5.9

| –6.694

| –7.0

Ga3+ + 3 H2O ⇌ Ga(OH)3 + 3 H+

| –10.3

|

| –11.96

Ga3+ + 4 H2O ⇌ Ga(OH)4 + 4 H+

| –16.6

| –16.588

| –15.52

Ga(OH)3(s) ⇌ Ga3+ + 3 OH

|\approx–37

| –37.0

|

GaO(OH)(s) + H2O ⇌ Ga3+ + 3 OH

| –39.06

| –39.1

| –40.51

=Germanium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=349}}

!Wood and Samson, 2006{{Cite journal |last=Wood |first=S.A. |last2=Samson |first2=I.M. |date=2006 |title=The aqueous geochemistry of gallium, germanium, indium and scandium |url=https://doi.org/10.1016/j.oregeorev.2003.06.002 |journal=Ore Geol. Rev. |volume=28 |via=57–102}}

!Filella and May, 2023{{Cite journal |last=Filella |first=M. |last2=May |first2=P.M. |date=2023 |title=The aqueous solution chemistry of germanium under conditions of environmental and biological interest: inorganic ligands |url=https://doi.org/10.1016/j.apgeochem.2023.105631 |journal=Applied Geochemistry |volume=155 |pages=105631}}

Ge(OH)4 ⇌ GeO(OH)3 + H+

| –9.31

| –9.32 ± 0.05

| –9.099

Ge(OH)4 ⇌ GeO2(OH)22+ + 2 H+

| –21.9

|

|

GeO2(OH)22– + H+ ⇌ GeO(OH)3

|

|

| 12.76

8 Ge(OH)4 ⇌ Ge8O16(OH)33- + 13 H2O + 3 H+

| –14.24

|

|

8 Ge(OH)4 + 3 OH ⇌ Ge8(OH)353–

|

|

|28.33

GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4

|

| –1.35

| –1.373

GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4

| -4.37

|–5.02

|–4.999

=Gold(III)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=279–285}}

Au(OH)3 +2 H+ ⇌ AuOH2+ + 2 H2O

| 1.51

Au(OH)3 + H+ ⇌ Au(OH)2+ + H2O

| < 1.0

Au(OH)3 + H2O ⇌ Au(OH)4 + H+

|–11.77

Au(OH)3 + 2 H2O ⇌ Au(OH)52– + 2 H+

| –25.13

Au(OH)52– + 3 H2O ⇌ Au(OH)63– + 3 H+

|< –41.1

Au(OH)3(c) ⇌ Au(OH)3

| –5.51

= Hafnium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=158}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=460–463}}

Hf4+ + H2O ⇌ HfOH3+ + H+

| –0.25

| −0.26 ± 0.10

Hf4+ + 2 H2O ⇌ Hf(OH)22+ + 2 H+

| (–2.4)

|

Hf4+ + 3 H2O ⇌ Hf(OH)3+ + 3 H+

|(–6.0)

|

Hf4+ + 4 H2O ⇌ Hf(OH)4 + 4 H+

| –10.7*

|−3.75 ± 0.34*

Hf4+ + 5 H2O ⇌ Hf(OH)5 + 5 H+

|–17.2

|

3 Hf4+ + 4 H2O ⇌ Hf3(OH)48+ + 4 H+

|

| 0.55 ± 0.30

4 Hf4+ + 8 H2O ⇌ Hf4(OH)88+ + 8 H+

|

|6.00 ± 0.30

HfO2(s) + 4 H+ ⇌ Hf4+ + 2 H2O

|–1.2*

|–5.56 ± 0.15*

HfO2(am) + 4 H+ ⇌ Hf4+ + 2 H2O

|

|–3.11 ± 0.20

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.

= Holmium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=247, 250−251 and 293−295}}

Ho3+ + H2O ⇌ HoOH2+ + H+

|−8.0

|−7.43 ± 0.05

2 Ho3+ + 2 H2O ⇌ Ho2(OH)24+ + 2 H+

|

|−13.5 ± 0.2

3 Ho3+ + 5 H2O ⇌ Ho3(OH)54+ + 5 H+

|

|−30.9 ± 0.3

Ho(OH)3(s) + 3 H+ ⇌ Ho3+ + 3 H2O

|15.4

|15.60 ± 0.30

=Indium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cation |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=327}}

!NIST46

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=812–817}}

In3+ + H2O ⇌ InOH2+ + H+

| –4.00

| –3.927

| –3.96

In3+ + 2 H2O ⇌ In(OH)2+ + 2 H+

| –7.82

|–7.794

|–9.16

In3+ + 3 H2O ⇌ In(OH)3 + 3 H+

|–12.4

|–12.391

|

In3+ + 4 H2O ⇌ In(OH)4 + 4 H+

| –22.07

|–22.088

|–22.05

In(OH)3(s) ⇌ In3+ + 3 OH

|–36.92

|–36.9

|–36.92

1/2 In2O3(s) + 3/2 H2O ⇌ In3+ + 3 OH

|

|

| –35.24

= Iridium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=736‒739}}

Ir3+ + H2O ⇌ IrOH2+ + H+

| ‒3.77 ± 0.10

Ir3+ + 2 H2O ⇌ Ir(OH)2+ + 2 H+

|‒8.46 ± 0.20

Ir(OH)3(s) + 3 H+ ⇌ Ir3+ + 3 H2O

|8.88 ± 0.20

=Iron(II)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=235}}

!Nordstrom et al., 1990

!Hummel et al., 2002

!Lemire et al., 2013{{Cite book |last=Lemire |first=R.J. |title=Chemical Thermodynamics of Iron, Part 1 |last2=Berner |first2=U. |last3=Musikas |first3=C. |last4=Palmer |first4=D.A. |last5=Taylor |first5=P. |last6=Tochiyama |first6=O. |work= |publisher=OECD Nuclear Energy Agency (NEA) |year=2013 |series=Chemical Thermodynamics |volume=13a}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.I. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=573−585}}

Fe2+ + H2O ⇌ FeOH+ + H+

| –9.3

| –9.5

|–9.5

|–9.1 ± 0.4

| −9.43 ± 0.10

Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+

|–20.5

|

|

|

|−20.52 ± 0.08

Fe2+ + 3 H2O ⇌ Fe(OH)3 + 3 H+

|–29.4

|

|

|

|−32.68 ± 0.15

Fe(OH)2(s) +2 H+ ⇌ Fe2+ + 2 H2O

|

|

|

|

|12.27 ± 0.88

= Iron(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Lemire et al., 2013

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=585–620}}

Fe3+ + H2O ⇌ FeOH2+ + H+

| –2.19

|−2.15 ± 0.07

| –2.20 ± 0.02

Fe3+ + 2 H2O ⇌ Fe(OH)2+ + 2 H+

|–5.67

|−4.8 ± 0.4

|–5.71 ± 0.10

Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+

|<–12

|<–14

|–12.42 ± 0.20

Fe3+ + 4 H2O ⇌ Fe(OH)4 + 4 H+

|–21.6

|−21.5 ± 0.5

|–21.60 ± 0.23

2 Fe3+ + 2 H2O ⇌ Fe2(OH)24+ + 2 H+

|–2.95

|–2.91 ± 0.07

|–2.91 ± 0.07

3 Fe3+ + 4 H2O ⇌ Fe3(OH)45+ + 4 H+

|–6.3

|

|−6.3 ± 0.1

Fe(OH)3(s) +3 H+ ⇌ Fe3+ + 3 H2O

2-line ferrihydrite

|2.5

|3.5

|3.50 ± 0.20

Fe(OH)3(s) ⇌ Fe3+ + 3 OH

6-line ferrihydrite

|

|−38.97 ± 0.64

|

α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O

goethite

|0.5

|

|0.33 ± 0.10

α-FeOOH + H2O ⇌ Fe3+ + 3 OH

goethite

|

|−41.83 ± 0.37

|

0.5 α-Fe2O3(s)+ 3 H+ ⇌ Fe3+ + 1.5 H2O

hematite

|

|

|0.36 ± 0.40

0.5 α-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH

hematite

|

|−42.05 ± 0.26

|

0.5 γ-Fe2O3(s) + 3 H+ ⇌ Fe3+ + 1.5 H2O

maghemite

|

|

|1.61 ± 0.61

0.5 γ-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH

maghemite

|

|−40.59 ± 0.29

|

α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O

goethite

|

|

|1.85 ± 0.37

γ-FeOOH + H2O ⇌ Fe3+ + 3 OH

lepidocrocite

|

|−40.13 ± 0.37

|

Fe(OH)3(s) + 3 H+ ⇌ Fe3+ + 3 H2O

magnetite

|

|

|−12.26 ± 0.26

= Lanthanum =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baer |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=137}}

!Brown and Ekberg, 2016

La3+ + H2O ⇌ LaOH2+ + H+

| –8.5

| –8.89 ± 0.10

2 La3+ + 2 H2O ⇌ La2(OH)24+ + 2 H+

|≤ –17.5

|–17.57 ± 0.20

3 La3+ + 5 H2O ⇌ La3(OH)54+ + 5 H+

|≤ –38.3

|–37.8 ± 0.3

5 La3+ + 9 H2O ⇌ La5(OH)96+ + 9 H+

|–71.2

|

La(OH)3(s) + 3 H+ ⇌ La3+ + 3 H2O

|20.3

|19.72 ± 0.34

=Lead(II)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=365}}

!NIST46

!Powell et al, 2009{{Cite journal |last=Powell |first=K.J. |last2=Brown |first2=P.L. |last3=Byrne |first3=R.H. |last4=Gajda |first4=T. |last5=Hefter |first5=G. |last6=Leuz |first6=A.K. |last7=Sjöberg |first7=S. |last8=Wanner |first8=H. |date=2009 |title=Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report) |journal=Pure Appl. Chem. |volume=81 |pages=2425–2476 |doi=10.1351/PAC-REP-09-03-05}}

!Brown and Ekberg, 2016

!Cataldo et al., 2018{{Cite journal |last=Cataldo |first=S. |last2=Lando |first2=G. |last3=Milea |first3=D. |last4=Orecchio |first4=S. |last5=Pettignano |first5=A. |last6=Sammartano |first6=S. |date=2018 |title= A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate |journal=New J. Chem. |volume=42 |pages=7640–7648 |doi=10.1039/C7NJ04456A|hdl=10447/326779 |hdl-access=free }}

Pb2+ + H2O ⇌ PbOH+ + H+

| –7.71

| –7.6

|–7.46 ± 0.06

| –7.49 ± 0.13

|–6.47± 0.03

Pb2+ + 2 H2O ⇌ Pb(OH)2 + 2 H+

|–17.12

|–17.1

|–16.94 ± 0.09

|–16.99 ± 0.06

|–16.12 ± 0.01

Pb2+ + 3 H2O ⇌ Pb(OH)3- + 3 H+

|–28.06

|–28.1

|–28.03± 0.06

|–27.94 ± 0.21

|–28.4 ± 0.1

Pb2+ + 4 H2O ⇌ Pb(OH)42- + 4 H+

|

|

|–40.8

|

|

2 Pb2+ + H2O ⇌ Pb2(OH)3+ + H+

|–6.36

|–6.4

|–7.28± 0.09

|–6.73 ± 0.31

|

3 Pb2+ + 4 H2O ⇌ Pb3(OH)42+ + 4 H+

|–23.88

|–23.9

|–23.01 ± 0.07

|–23.43 ± 0.10

|

3 Pb2+ + 5 H2O ⇌ Pb3(OH)5+ + 5 H+

|

|

|

|–31.11 ± 0.10

|

4 Pb2+ + 4 H2O ⇌ Pb4(OH)44+ + 4 H+

|–20.88

|–20.9

|–20.57± 0.06

|–20.71 ± 0.18

|

6 Pb2+ + 8 H2O ⇌ Pb6(OH)84+ + 8 H+

|–43.61

|–43.6

|–42.89± 0.07

|–43.27 ± 0.47

|

PbO(s) + 2 H+ ⇌ Pb2+ + H2O

|

|

|12.62 (red)

12.90 (yellow)

|

|

PbO(s) +H2O ⇌ Pb2+ + 2 OH

|–15.28 (red)

| -15.3

|–15.3 (red)

–15.1 (yellow)

|–15.37 ± 0.04 (red)

–15.1 ± 0.08 (yellow)

|

Pb2O(OH)2(s) +H2O ⇌ 2 Pb2+ + 4 OH

|

|

|–14.9

|

|

PbO(s) +H2O ⇌ Pb(OH)2

|

|

|–4.4 (red)

–4.2 (yellow)

|

|

Pb2O(OH)2(s) +H2O ⇌ 2 Pb(OH)2

|

|

|–4.0

|

|

PbO(s) + 2 H2O ⇌ Pb(OH)3 + H+

|

|

|–1.4 (red)

–1.2 (yellow)

|

|

Pb2O(OH)2(s) + 2 H2O ⇌ 2 Pb(OH)3 + 2 H+

|

|

|–1.0

|

|

=Lead(IV)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Feitknecht and Schindler, 1963

β-PbO2 + 2 H2O ⇌ Pb4+ + 4 OH

| –64

β-PbO2 + 2 H2O + 2 OH ⇌ Pb(OH)62–

|–4.5

= Lithium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=86}}

!Nordstrom et al., 1990

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |location=Weinheim, Germany |pages=136–141}}

Li+ + H2O ⇌ LiOH + H+

| –13.64

| –13.64

| –13.84 ± 0.14

= Magnesium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=89}}

!Nordstrom et al., 1990

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |location=Weinheim, Germany |pages=178–195}}

Mg2+ + H2O ⇌ MgOH+ + H+

| –11.44

| –11.44

| –11.70 ± 0.04

4 Mg2+ + 4 H2O ⇌ Mg4(OH)44+ + 4 H+

|–39.71

|

|

Mg(OH)2(cr) + 2 H+ ⇌ Mg2+ + 2 H2O

|16.84

|16.84

|17.11 ± 0.04

=Manganese(II)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Perrin et al., 1969{{Cite book |last=Perrin |first=D.D |title=Dissociation constants of inorganic acids and bases in aqueous solutions |publisher=International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths |year=1969 |pages=181}}

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=226}}

!Nordstrom et al., 1990

!Hummel et al., 2002{{Cite book |last=Hummel |first=W. |title=TECHNICAL REPORT 02-16 |last2=Berner |first2=U. |last3=Curti |first3=E. |last4=Pearson |first4=F.J. |last5=Thoenen |first5=T. |publisher=Nagra/ PSI Chemical Thermodynamic Data Base 01/01. |year=2002}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=557−561}}

Mn2+ + H2O ⇌ MnOH+ + H+

|–10.59

|–10.59

| –10.59

| –10.59

| −10.58 ± 0.04

Mn2+ + 2 H2O ⇌ Mn(OH)2 + 2 H+

|

|–22.2

|

|

|−22.18 ± 0.20

Mn2+ + 3 H2O ⇌ Mn(OH)3 + 3 H+

|

|–34.8

|

|

|−34.34 ± 0.45

Mn2+ + 4 H2O ⇌ Mn(OH)42– + 4 H+

|

|–48.3

|

|

|−48.28 ± 0.40

2 Mn2+ + H2O ⇌ Mn2OH3+ + H+

|

|–10.56

|

|

|

2 Mn2+ + 3 H2O ⇌ Mn2(OH)3+ + 6 H+

|

|–23.90

|

|

|

Mn(OH)2(s) + 2 H+ ⇌ Mn2+ + 2 H2O

|15.2

|15.2

|15.2

|

|15.19 ± 0.10

MnO(s) + 2 H+ ⇌ Mn2+ + H2O

|

|

|

|

|17.94 ± 0.12

=Manganese(III)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C |publisher=Wiley |year=2016 |pages=568–570}}

Mn3+ + H2O ⇌ MnOH2+ + H+

| –11.70 ± 0.04

=Mercury(I)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cation |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=302}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=741–755}}

Hg22+ + H2O ⇌ Hg2OH+ + H+

|−5.0a

| −4.45 ± 0.10

(a) 0.5 M HClO4

=Mercury(II)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=312}}

!Powell et all, 2005{{Cite journal |last=Powell |first=K.J. |last2=Brown |first2=P.L. |last3=Byrne |first3=R.H. |last4=Gajda |first4=T. |last5=Hefter |first5=G. |last6=Sjöberg |first6=S. |last7=Wanner |first7=H. |date=2005 |title=Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+– Cl, OH, CO32−, SO42−, and PO43− aqueous systems (IUPAC technical report) |journal=Pure Appl. Chem. |volume=77 |pages=739–80 |doi=10.1515/iupac.77.0018}}

!Brown and Ekberg, 2016

Hg2+ + H2O ⇌ HgOH+ + H+

|−3.40

|–3.40 ± 0.08

| –3.40 ± 0.08

Hg2+ + 2 H2O ⇌ Hg(OH)2 + 2 H+

| -6.17

|–5.98 ± 0.06

|−5.96 ± 0.07

Hg2+ + 3 H2O ⇌ Hg(OH)3 + 3 H+

|–21.1

|–21.1 ± 0.3

|

HgO(s) + 2 H+ ⇌ Hg2+ + H2O

|2.56

|2.37 ± 0.08

|2.37 ± 0.08

=Molybdenum(VI)=

Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=256}}

!Jolivet, 2000{{Cite book |last=Jolivet |first=J.-P. |title=Solution to Solid State |publisher=Wiley |year=2000 |chapter=Metal Oxide Chemistry and Synthesis}}

!NIST46

!Crea et al., 2017{{Cite journal |last=Crea |first=F. |last2=De Stefano |first2=C. |last3=Irto |first3=A. |last4=Milea |first4=D. |last5=Pettignano |first5=A. |last6=Sammartano |first6=S. |date=2017 |title=Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations |journal=Journal of Molecular Liquids |volume=229 |pages=15–26 |doi=10.1016/j.molliq.2016.12.041}}

MoO42– + H+ ⇌ HMoO4

|3.89a

|

| 4.24

| 4.47 ± 0.02

MoO42– + 2 H+ ⇌ H2MoO4

|7.50a

|

|

|8.12 ± 0.03

HMoO4 + H+ ⇌ H2MoO4

|

|

|4.0

|

Mo7O246– + H+ ⇌ HMo7O245–

|

|4.4

|

|

HMo7O245– + H+ ⇌ H2Mo7O244–

|

|3.5

|

|

H2Mo7O244– + H+ ⇌ H3Mo7O243–

|

|2.5

|

|

7 MoO42-+ 8 H+ ⇌ Mo7O246– + 4 H2O

|57.74a

|

|52.99b

|51.93 ± 0.04

7 MoO42– + 9 H+ ⇌ Mo7O23(OH)5– + 4 H2O

|62.14a

|

|

|58.90 ± 0.02

7 MoO42– + 10 H+ ⇌ Mo7O22(OH)24– + 4 H2O

|65.68a

|

|

|64.63 ± 0.05

7 MoO42– + 11 H+ ⇌ Mo7O21(OH)33– + 4 H2O

|68.21a

|

|

|68.68 ± 0.06

19 MoO42- + 34 H+ ⇌ Mo19O594– + 17 H2O

|196.3a

|

|196a

|

MoO3(s) + H2O ⇌ MoO42– + 2 H+

|–12.06a

|

|

|

= Neodymium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!NIST46

!Neck et al., 2009{{Cite journal |last=Neck |first=V. |last2=Altmaier |first2=M. |last3=Rabung |first3=T. |last4=Lützenkirchen |first4=J. |last5=Fanghänel |first5=T. |date=2009 |title=Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes |journal=Pure Appl. Chem. |volume=81 |pages=1555–1568 |doi=10.1351/PAC-CON-08-09-05}}

!Brown and Ekberg, 2016

Nd3+ + H2O ⇌ NdOH2+ + H+

|–8.0

|–8.0

|–7.4 ± 0.4

|–8.13 ± 0.05

Nd3+ + 2 H2O ⇌ Nd(OH)2+ + 2 H+

|(–16.9)

|

|–15.7 ± 0.7

|

Nd3+ + 3 H2O ⇌ Nd(OH)3(aq) + 3 H+

|(–26.5)

|

|–26.2 ± 0.5

|

Nd3+ + 4 H2O ⇌ Nd(OH)4 + 4 H+

|(–37.1)

|–37.4

|–40.7 ± 0.7

|

2 Nd3+ + 2 H2O ⇌ Nd2(OH)24+ + 2 H+

|–13.86

|–13.9

|

|–15.56 ± 0.20

3 Nd3+ + 5 H2O ⇌ Nd3(OH)54+ + 5 H+

|< –28.5

|

|

|–34.2 ± 0.3

Nd(OH)3(s) + 3 H+ ⇌ Nd3+ + 3 H2O

|18.6

|

|17.2 ± 0.4

|17.89 ± 0.09

Nd(OH)3(s) ⇌ Nd3+ + 3 OH

|

|–23.2 ± 0.9

|–21.5 (act)

–23.1(inact)

|

= Neptunium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=380}}

!Grenthe et al, 2020

Np3+ + H2O ⇌ NpOH2+ + H+

| -7.3 ± 0.5

|–6.8 ± 0.3

= Neptunium(IV) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=183}}

!NIST46

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=380–384}}

!Grenthe et al, 2020

Np4+ + H2O ⇌ NpOH3+ + H+

|–1.49

|–1.5

|–1.31 ± 0.05

|0.5 ± 0.2

Np4+ + 2 H2O ⇌ Np(OH)22+ + 2 H+

|

|

|–3.7 ± 0.3

|0.3 ± 0.3

Np4+ + 4 H2O ⇌ Np(OH)4 + 4 H+

|

|

|–10.0 ± 0.9

|–8 ± 1

Np4+ + 4 OH ⇌ NpO2(am, hyd) + 2 H2O

|52

|54.9 ± 0.4

|57.5 ± 0.3

|56.7 ± 0.5

= Neptunium(V) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brownº |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=384–394}}

!Grenthe et al, 2020

NpO2+ + + H2O ⇌ NpO2(OH) + H+

|–8.85

|–10.7 ± 0.5

|–11.3 ± 0.7

NpO2+ + 2 H2O ⇌ NpO2(OH)2 + 2 H+

|

|–22.8 ± 0.7

|–23.6 ± 0.5

NpO2+ + H2O ⇌ NpO2(OH)(am, fresh) + H+

|≤ –4.7

|–5.21 ± 0.05

|–5.3 ± 0.2

NpO2+ + H2O ⇌ NpO2(OH)(am, aged) + H+

|

|–4.53 ± 0.06

|–4.7 ± 0.5

= Neptunium(VI) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer,

1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=183–184}}

!NIST46

!Brown and Ekberg,

2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=394–396}}

!Grenthe et

al, 2020

NpO22+ + H2O ⇌ NpO2(OH)+ + H+

|–5.15

|–5.12

|–5.1 ± 0.2

|–5.1 ± 0.4

NpO22+ + 3 H2O ⇌ NpO2(OH)3 + 3 H+

|

|

|–21 ± 1

|

NpO22+ + 4 H2O ⇌ NpO2(OH)42- + 4 H+

|

|

|–32 ± 1

|

2 NpO22+ + 2 H2O ⇌ (NpO2)2(OH)22+ + 2 H+

|–6.39

|–6.39

|–6.2 ± 0.2

|–6.2 ± 0.2

3 NpO22+ + 5 H2O ⇌ (NpO2)3(OH)5+ + 5 H+

|–17.49

|–17.49

|–17.0 ± 0.2

|–17.1 ± 0.2

NpO22+ + 2 H2O ⇌ NpO3.H2O(cr) + 2 H+

|≥-6.6

|

|–5.4 ± 0.4

|–5.4 ± 0.4

= Nickel(II) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Feitknecht and Schindler, 1963{{Cite journal |last=Feitknecht |first=W. |last2=Schindler |first2=P. |date=1963 |title=Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution |url=https://doi.org/10.1515/iupac.6.0001 |journal=Pure and Applied Chemistry |volume=6 |issue=2 |pages=125–206 |doi=10.1351/pac196306020125}}

!Baes and Messmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Messmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=246}}

!NIST46

!Gamsjäger et al., 2005{{Cite book |last=Gamsjäger |first=H. |title=Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6 |last2=Bugajski |first2=J. |last3=Gajda |first3=T. |last4=Lemire |first4=R.J. |last5=Prei |first5=W. |publisher=OECD |year=2005 |location=Paris}}

!Thoenen et al., 2014

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=632–649}}

Ni2+ + H2O ⇌ NiOH+ + H+

|

|–9.86

|–9.9

|–9.54 ± 0.14

|–9.54 ± 0.14

|–9.90 ± 0.03

Ni2+ + 2 H2O ⇌ Ni(OH)2 + 2 H+

|

|–19

|–19

|

|< –18

|–21.15 ± 0.0

Ni2+ + 3 H2O ⇌ Ni(OH)3 + 3 H+

|

|–30

|–30

|–29.2 ± 1.7

|–29.2 ± 1.7

|

Ni2+ + 4 H2O ⇌ Ni(OH)42– + 4 H+

|

|< –44

|

|

|

|

2 Ni2+ + H2O ⇌ Ni2(OH)3+ + H+

|

|–10.7

|

|–10.6 ± 1.0

|–10.6 ± 1.0

|–10.6 ± 1.0

4 Ni2+ + 4 H2O ⇌ Ni4(OH)44+ + 4 H+

|

|–27.74

|–27.7

|–27.52 ± 0.15

|–27.52 ± 0.15

|–27.9 ± 0.6

β-Ni(OH)2(s) + 2 H+ ⇌ Ni2+ + 2 H2O

|

|10.8

|

|

|11.02 ± 0.20

|10.96 ± 0.20

11.75 ± 0.13 (microcr)

Ni(OH)2(s) ⇌ Ni2+ + 2 OH

|–17.2 (inactive)

|

|–17.2

|–16.97± 0.20 (β)

–17.2 ± 1.3 (cr)

|

|

Ni(OH)2(s) + OH ⇌ Ni(OH)3

|–4.2 (inactive)

|

|

|

|

|

NiO(cr) + 2 H+ ⇌ Ni2+ + H2O

|

|

|

|12.38 ± 0.06

|

|12.48 ± 0.15

=Niobium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Filella and May, 2020{{Cite journal |last=Filella |first=M. |last2=May |first2=P.M. |date=2020 |title=The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest. |journal=Applied Geochemistry |volume=122 |doi=10.1016/j.apgeochem.2020.104729|doi-access=free }}

Nb(OH)5 + H+ ⇌ Nb(OH)4+ + H2O

| ~ –0.6

| 1.603

Nb(OH)5 + H2O ⇌ Nb(OH)6 + H+

|~ –4.8

|–4.951

Nb6O198– + H+ ⇌ HNb6O197–

|

|14.95

HNb6O197– + H+ ⇌ H2Nb6O196–

|

|13.23

H2Nb6O196– + H+ ⇌ H3Nb6O195–

|

|11.73

1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5

|~ –7.4

|

Nb(OH)5(am,s) ⇌ Nb(OH)5

|

|–7.510

Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5

|

|–18.31

= Osmium(VI) =

Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Galbács et al., 1983{{Cite journal |last=Galbács |first=Z.M. |last2=Zsednai |first2=Á. |last3=Csányi |first3=L.J. |date=1983 |title=The acidic behaviour of osmium(VIII) and osmium(VI |journal=Transition Met. Chem. |volume=8 |pages=328–332 |doi=10.1007/BF00618563}}

OsO2(OH)42– + H+ ⇌ HOsO2(OH)4

| 10.4

HOsO2(OH)4 + H+ ⇌ H2OsO2(OH)4

|8.5

= Osmium(VIII) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Galbács et al., 1983

OsO2(OH)3(O)aq + H+ ⇌ OsO2(OH)4aq

| 12.2a

OsO2(OH)2(O)2aq + H+ ⇌ OsO2(OH)3(O)aq

|14.4b

(a) At I = 0.1 M (b) At I = 2.5 M

= Palladium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Perrin et al., 1969{{Cite book |last=Perrin |first=D.D. |title=Dissociation constants of inorganic acids and bases in aqueous solutions |publisher=International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths |year=1969 |pages=186}}

!Hummel et al., 2002

!Kitamura and Yul, 2010{{Cite journal |last=Kitamura |first=A. |last2=Yui |first2=M. |date=2010 |title=Reevaluation of thermodynamic data for hydroxide and hydrolysis species of palladium(II) using the Brønsted-Guggenheim Scatchard model |journal=J. Nuclear Sci. Technol. |volume=47 |pages=760−770 |doi=10.1080/18811248.2010.9711652|doi-access=free }}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=723−725}}

Pd2+ + H2O ⇌ PdOH+ + H+

|−0.96

|

| −0.65 ± 0.64

|−1.16 ± 0.30

Pd2+ + 2 H2O ⇌ Pd(OH)2 + 2 H+

|−2.6

|−4 ± 1

|−3.11 ± 0.63

|−3.07 ± 0.16

Pd2+ + 3 H2O ⇌ Pd(OH)3 + 3 H+

|

|−15.5 ± 1

|−14.20 ± 0.63

|

Pd(OH)2(am) + 2 H+ ⇌ Pd2+ + 2 H2O

|

|−3.3 ± 1

|

|−3.4 ± 0.2

= Plutonium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=186–187}}

!NIST46

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=396–397}}

!Grenthe et al, 2020

Pu3+ + H2O ⇌ PuOH2+ + H+

|

|–7.0

|–6.9 ± 0.2

|–6.9 ± 0.3

Pu3+ + 3 H2O ⇌ Pu(OH)3(cr) + 3 H+

|–19.65

|

|–15.8 ± 0.8

|–15 ± 1

= Plutonium(IV) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=187–189}}

!NIST46

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=397–401}}

!Grenthe et al, 2020

Pu4+ + H2O ⇌ PuOH 3+ + H+

|–0.5

|–0.5

|–0.7 ± 0.1

|0.6 ± 0.2

Pu4+ + 2 H2O ⇌ Pu(OH)22+ + 2 H+

|(–2.3)

|

|

|0.6 ± 0.3

Pu4+ + 3 H2O ⇌ Pu(OH)3+ + 3 H+

|(–5.3)

|

|

|–2.3 ± 0.4

Pu4+ + 4 H2O ⇌ Pu(OH)4 + 4 H+

|–9.5

|

|–12.5 ± 0.7

|–8.5 ± 0.5

Pu4+ + 4 OH ⇌ PuO2(am, hyd) + 2 H2O

|49.5

|

|47.9 ± 0.4 (0w)

53.8 ± 0.5 (1w)

|58.3 ± 0.5

= Plutonium(V) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=189–190}}

!NIST46

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=401–403}}

!Grenthe et al, 2020

PuO2+ + H2O ⇌ PuO2(OH) + H+

|–1.49

|–1.5

|–1.31 ± 0.05

|0.5 ± 0.2

PuO2+ + H2O ⇌ PuO2(OH)(am) + H+

|

|

|–3.7 ± 0.3

|0.3 ± 0.3

= Plutonium(VI) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer,

1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=190–191}}

!NIST46

!Brown and Ekberg,

2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=403–405}}

!Grenthe et

al, 2020

PuO22+ + H2O ⇌ PuO2(OH)+ + H+

|–5.6

|–5.6

|–5.36 ± 0.09

|–5.5 ± 0.5

PuO22+ + 2 H2O ⇌ PuO2(OH)2 + 2 H+

|

|

|–12.9 ± 0.2

|–13 ± 1

PuO22+ + 3 H2O ⇌ PuO2(OH)3 + 3 H+

|

|

|

|–24 ± 1

2 PuO22+ + 2 H2O ⇌ (PuO2)2(OH)22+ + 2 H+

|–8.36

|–8.36

|–7.8 ± 0.5

|–7 ± 1

3 PuO22+ + 5 H2O ⇌ (PuO2)3(OH)5+ + 5 H+

|–21.65

|–21.65

|

|

PuO22+ + 2 OH ⇌ PuO2(OH)2(am, hyd)

|

|

|

|22.8 ± 0.6

= Potassium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Nordstrom et al., 1990

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=148–150}}

K+ + H2O ⇌ KOH + H+

|–14.46

| –14.46

|–14.5 ± 0.4

= Praseodymium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!NIST46

!Brown and Ekberg, 2016

Pr3+ + H2O ⇌ PrOH2+ + H+

|–8.1

|

|–8.30 ± 0.03

2 Pr3+ + 2 H2O ⇌ Pr2(OH)24+ + 2 H+

|

|

|–16.31 ± 0.20

3 Pr3+ + 5 H2O ⇌ Pr3(OH)54+ + 5 H+

|

|

|–35.0 ± 0.3

Pr(OH)3(s) + 3 H+ ⇌ Pr3+ + 3 H2O

|19.5

|

|18.57 ± 0.20

Pr(OH)3(s) ⇌ Pr3+ + 3 OH

|

|–22.3 ± 1.0

|

= Radium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Nordstrom et al., 1990

Ra2+ + H2O ⇌ RaOH+ + H+

| –13.49

=Rhodium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Perrin et al., 1969{{Cite book |last=Perrin |first=D.D. |title=Dissociation constants of inorganic acids and bases in aqueous solutions |publisher=International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths |year=1969 |pages=191}}

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=263}}

!Brown and Ekberg{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=722}}

Rh3+ + H2O ⇌ RhOH2+ + H+

| ‒3.43

|‒3.4

|‒3.09 ± 0.1

Rh(OH)3(c) + OH ⇌ Rh(OH)4

|

|‒3.9

|

= Samarium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!NIST46

!Brown and Ekberg

Sm3+ + H2O ⇌ SmOH2+ + H+

|–7.9

| –7.9

|–7.84 ± 0.11

2 Sm3+ + 2 H2O ⇌ Sm2(OH)24+ + 2 H+

|

|

|–14.75 ± 0.20

3 Sm3+ + 5 H2O ⇌ Sm3(OH)54+ + 5 H+

|

|

|–33.9 ± 0.3

Sm(OH)3(s) + 3H+ ⇌ Sm3+ + 3H2O

|16.5

|

|17.19 ± 0.30

Sm(OH)3(s) ⇌ Sm3+ + 3 OH

|

|–23.9 ± 0.9 (am)

–25.9 (cr)

|

= Scandium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=128}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=225–236}}

Sc3+ + H2O ⇌ ScOH2+ + H+

| –4.3

|–4.16 ± 0.05

Sc3+ + 2 H2O ⇌ Sc(OH)2+ + 2 H+

|–9.7

|–9.71 ± 0.30

Sc3+ + 3 H2O ⇌ Sc(OH)3 + 3 H+

|–16.1

|–16.08 ± 0.30

Sc3+ + 4 H2O ⇌ Sc(OH)4+ 4 H+

|–26

|–26.7 ± 0.3

2 Sc3+ + 2 H2O ⇌ Sc2(OH)24+ + 2 H+

|–6.0

|–6.02 ± 0.10

3 Sc3+ + 5 H2O ⇌ Sc3(OH)54+ + 5 H+

|–16.34

|–16.33 ± 0.10

Sc(OH)3(s) + 3 H+ ⇌ Sc3+ + 3 H2O

|

|9.17 ± 0.30

ScO1.5(s) + 3 H+ ⇌ Sc3+ + 1.5 H2O

|

|5.53 ± 0.30

ScO(OH)(c) + 3 H+ ⇌ Sc3+ + 2 H2O

|9.4

|

Sc(OH)3(c) + OH ⇌ Sc(OH)4

|

|–3.5 ± 0.2

= Selenium(–II) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Olin et al., 2015{{Cite book |last=Olin |first=Å |title=Chemical Thermodynamics of Selenium |last2=Noläng |first2=B. |last3=Öhman |first3=L.-O. |last4=Osadchii |first4=E |last5=Rosén |first5=E. |publisher=OECD Pub. |year=2005}}

!Thoenen et al., 2014

H2Se(g) ⇌ H2Se(aq)

| –1.10 ± 0.01

|–1.10 ± 0.01

H2Se ⇌ HSe + H+

|–3.85 ± 0.05

|–3.85 ± 0.05

HSe ⇌ Se2– + H+

|–14.91 ± 0.20

|

= Selenium(IV) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=386}}

!Olin et al., 2005

!Thoenen et al., 2014

SeO32– + H+ ⇌ HSeO3

| 8.50

|8.36 ± 0.23

|8.36 ± 0.23

HSeO3 + H+ ⇌ H2SeO3

|2.75

|2.64 ± 0.14

|2.64 ± 0.14

= Selenium(VI) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=387}}

!Olin et al., 2005

!Thoenen et al., 2014

SeO42‒ + H+ ⇌ HSeO4

| 1.360

|1.75 ± 0.10

|1.75 ± 0.10

=Silicon=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=342}}

!Thoenen et al., 2014{{Cite book |last=Thoenen |first=T. |title=The PSI/Nagra Chemical Thermodynamic Database 12/07 |last2=Hummel |first2=W. |last3=Berner |first3=U. |last4=Curti |first4=E. |publisher=Paul Scherrer Institut |year=2014 |location=Villigen PSI, Switzerland |pages=205–212}}

Si(OH)4 ⇌ SiO(OH)3 + H+

| –9.86

|–9.81 ± 0.02

Si(OH)4 ⇌ SiO2(OH)22– + 2 H+

|–22.92

|–23.14 ± 0.09

4 Si(OH)4 ⇌ Si4O6(OH)64– + 2 H+ + 4 H2O

|–13.44

|

4 Si(OH)4 ⇌ Si4O8(OH)44– + 4 H+ + 4 H2O

|–35.80

|–36.3 ± 0.2

SiO2(quartz) + 2 H2O ⇌ Si(OH)4

|–4.0

|–3.739 ± 0.087

SiO2(am) + 2 H2O ⇌ Si(OH)4

|

|–2.714

=Silver=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=278}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=725−730}}

Ag+ + H2O ⇌ AgOH + H+

|−12.0

|−11.75 ± 0.14

Ag+ + 2 H2O ⇌ Ag(OH)2 + 2 H+

|−24.0

|−24.34 ± 0.14

0.5 Ag2O(am) + H+ ⇌ Ag+ + 0.5 H2O

|6.29

|6.27 ± 0.05

=Sodium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Nordstrom et al., 1990

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |location=Weinheim, Germany |pages=142–147}}

Na+ + H2O ⇌ NaOH + H+

| –14.18

| –14.18

| –14.4 ± 0.2

=Strontium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Nordstrom et al., 1990

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |location=Weinheim, Germany |pages=210–213}}

Sr2+ + H2O ⇌ SrOH+ + H+

| –13.29

| –13.29

| –13.15 ± 0.05

=Tantalum=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=252}}

!Filella and May, 2019a{{Cite journal |last=Filella |first=M. |last2=May |first2=P.M. |date=2019 |title=The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest |journal=Applied Geochemistry |volume=109 |pages=104402 |doi=10.1016/j.apgeochem.2019.104402}}

Ta(OH)5 + H+ ⇌ Ta(OH)4+ + H2O

| ~1

| 0.7007

Ta(OH)5 + H2O ⇌ Ta(OH)6 + H+

|~ –9.6

|

Ta6O198– + H+ ⇌ HTa6O197–

|

|16.35

HTa6O197– + H+ ⇌ H2Ta6O196–

|

|14.00

1/2 Ta2O5(act) + 5/2 H2O ⇌ Ta(OH)5

|~ –5.2

|

Ta(OH)5(s) ⇌ Ta(OH)5

|

|–5.295

Ta2O5(s) + 5 H2O ⇌ 2 Ta(OH)5

|

|–20.00

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

=Tellurium(-II)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Filella and May, 2019a{{Cite journal |last=Filella |first=M. |last2=May |first2=P.M. |date=2019 |title=The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species |journal=Environ. Chem. |volume=16 |pages=289–295 |doi=10.1071/EN19017}}

Te2‒ + H+ ⇌ HTe

| 11.81

HTe + H+ ⇌ H2Te

|2.476

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

=Tellurium(IV)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=395}}

!Filella and May, 2019a

TeO32‒ + H+ ⇌ HTeO3

|

| 9.928

HTeO3 + H+ ⇌ H2TeO3

|

|6.445

H2TeO3 ⇌ HTeO3 + H+

|‒2.68

|

H2TeO3 ⇌ TeO32‒ + 2 H+

|‒12.5

|

H2TeO3 + H+ ⇌ Te(OH)3+

|3.13

|2.415

TeO2(s) + H2O ⇌ H2TeO3

|

|‒4.709

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

=Tellurium(VI)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Filella and May, 2019a

TeO2(OH)42‒ + H+ ⇌ TeO(OH)5

|

| 10.83

TeO(OH)5 + H+ ⇌ Te(OH)6

|7.68

|7.696

TeO2(OH)42‒ + 2 H+ ⇌ Te(OH)6

|18.68

|

TeO3(OH)33‒ + 3 H+ ⇌ Te(OH)6

|34.3

|

2 Te(OH)6 ⇌ Te2O(OH)11 + H+

|

|‒6.929

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

= Terbium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brwon |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=247, 250−251 and 287−290}}

Tb3+ + H2O ⇌ TbOH2+ + H+

|−7.9

|−7.60 ± 0.09

2 Tb3+ + 2 H2O ⇌ Tb2(OH)24+ + 2 H+

|

|−13.9 ± 0.2

3 Tb3+ + 5 H2O ⇌ Tb3(OH)54+ + 5 H+

|

|−31.7 ± 0.3

Tb(OH)3(s) + 3 H+ ⇌ Tb3+ + 3 H2O

|16.5

|16.33 ± 0.30

=Thallium(I)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=335}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=817–826}}

Tl+ + H2O ⇌ TlOH + H+

|–13.21

|

Tl+ + OH ⇌ TlOH

|

|0.64 ± 0.05

Tl+ + 2 OH ⇌ Tl(OH)2

|

|–0.7 ± 0.7

{{sfrac|1|2}} Tl2O(s) + H+ ⇌ Tl+ + {{sfrac|1|2}} H2O

|

|13.55 ± 0.20

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

=Thallium(III)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016

Tl3+ + H2O ⇌ TlOH2+ + H+

|–0.62

| –0.22 ± 0.19

Tl3+ + 2 H2O ⇌ Tl(OH)2+ + 2 H+

|–1.57

|

Tl3+ + 3 H2O ⇌ Tl(OH)3 + 3 H+

|–3.3

|

Tl3+ + 4 H2O ⇌ Tl(OH)4 + 4 H+

|–15.0

|

{{sfrac|1|2}} Tl2O3(s) + 3 H+ ⇌ Tl3+ + {{sfrac|3|2}} H2O

|–3.90

|–3.90 ± 0.10

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

= Thorium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer,

1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=168}}

!Rand et

al., 2008{{Cite book |last=Rand |first=M. |url=https://www.oecd-nea.org/science/pubs/2007/6254-chemical-thermodynamics-vol.11.pdf |title=Chemical Thermodynamics of Thorium |last2=Fuger |first2=J. |last3=Grenthe |first3=I. |last4=Neck |first4=V. |last5=Rai |first5=D. |publisher=OECD Publishing |year=2008}}

!Thoenen et

al, 014{{Cite book |last=Thoenen |first=T. |title=The PSI/Nagra Chemical Thermodynamic Database 12/07 |last2=Hummel |first2=W. |last3=Berner |first3=U. |last4=Curti |first4=E. |publisher=Paul Scherrer Institut PSI |year=2014 |location=Villigen |pages=259–263}}

!Brown and Ekberg,

2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=462–498}}

Th4+ + H2O ⇌ ThOH3+ + H+

|–3.20

|–2.5 ± 0.5

|–2.5 ± 0.5

| –2.5 ± 0.5

Th4+ + 2 H2O ⇌ Th(OH)22+ + 2 H+

|–6.93

|–6.2 ± 0.5

|–6.2 ± 0.5

|–6.2 ± 0.5

Th4+ + 3 H2O ⇌ Th(OH)3+ + 3 H+

|< –11.7

|

|

|

Th4+ + 4 H2O ⇌ Th(OH)4 + 4 H+

|–15.9

|–17.4 ± 0.7

|–17.4 ± 0.7

|–17.4 ± 0.7

2Th4+ + 2 H2O ⇌ Th2(OH)26+ + 2 H+

|–6.14

|–5.9 ± 0.5

|–5.9 ± 0.5

|–5.9 ± 0.5

2Th4+ + 3 H2O ⇌ Th2(OH)35+ + 3 H+

|

|–6.8 ± 0.2

|–6.8 ± 0.2

|–6.8 ± 0.2

4Th4+ + 8 H2O ⇌ Th4(OH)88+ + 8 H+

|–21.1

|–20.4 ± 0.4

|–20.4 ± 0.4

|–20.4 ± 0.4

4Th4+ + 12 H2O ⇌ Th4(OH)124+ + 12 H+

|

|–26.6 ± 0.2

|–26.6 ± 0.2

|–26.6 ± 0.2

6Th4+ + 15 H2O(l) ⇌ Th6(OH)159+ + 15 H+

|–36.76

|–36.8 ± 1.5

|–36.8 ± 1.5

|–36.8 ± 1.5

6Th4+ + 14 H2O(l) ⇌ Th6(OH)1410+ + 14 H+

|

|–36.8 ± 1.2

|–36.8 ± 1.2

|–36.8 ± 1.2

ThO2(c) + 4 H+ ⇌ Th4+ + 2 H2O

|6.3

|

|

|

ThO2(am) + 4 H+ ⇌ Th4+ + 2 H2O

|

|

|

|8.8 ± 1.0

ThO2(am,hyd,fresh) + 4 H+ ⇌ Th4+ + 2 H2O

|

|

|9.3 ± 0.9

|

ThO2(am,hyd,aged) + 4 H+ ⇌ Th4+ + 2 H2O

|

|

|8.5 ± 0.9

|

Th4+ + 4 OH ⇌ ThO2(am,hyd,fresh) + 2 H2O

|

|46.7 ± 0.9

|

|

Th4+ + 4 OH ⇌ ThO2(am,hyd,aged) + 2 H2O

|

|47.5 ± 0.9

|

|

= Thulium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=247, 250−251 and 297−300}}

Tm3+ + H2O ⇌ TmOH2+ + H+

|−7.7

| −7.34 ± 0.09

2 Tm3+ + 2 H2O ⇌ Tm2(OH)24+ + 2 H+

|

|−13.2 ± 0.2

3 Tm3+ + 5 H2O ⇌ Tm3(OH)54+ + 5 H+

|

|−30.5 ± 0.3

Tm(OH)3(s) + 3 H+ ⇌ Tm3+ + 3 H2O

|15.0

|15.56 ± 0.40

= Tin(II) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Feitknecht, 1963

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=357}}

!Hummel et al., 2002

!NIST46

!Cigala et al, 2012{{Cite journal |last=Cigala |first=R.M. |last2=Crea |first2=F. |last3=De Stefan |first3=C. |last4=Lando |first4=G. |last5=Milea |first5=D. |last6=Sammartano |first6=S. |date=2012 |title=The inorganic speciation of tin(II) in aqueous solution |journal=Geochim. Cosmochim. Acta |volume=87 |pages=1–20 |doi=10.1016/j.gca.2012.03.029}}

!Gamsjäger et al, 2012{{Cite book |last=Gamsjäger |first=H. |title=Chemical Thermodynamics of Tin. Chemical Thermodynamics Volume 12 |last2=Gajda |first2=T. |last3=Sangster |first3=J. |last4=Saxena |first4=S.K. |last5=Voigt |first5=W. |publisher=OECD |year=2012 |location=Paris}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=836–842}}

Sn2+ + H2O ⇌ SnOH+ + H+

|

| –3.40

|–3.8 ± 0.2

|–3.4

|–3.52 ± 0.05

|–3.53 ± 0.40

| –3.53 ± 0.40

Sn2+ + 2 H2O ⇌ Sn(OH)2 + 2 H+

|

|–7.06

|–7.7 ± 0.2

|–7.1

|–6.26 ± 0.06

|–7.68 ± 0.40

|–7.68 ± 0.40

Sn2+ + 3 H2O ⇌ Sn(OH)3 + 3 H+

|

|–16.61

|–17.5 ± 0.2

|–16.6

|–16.97 ± 0.17

|–17.00 ± 0.60

|–17.56 ± 0.40

2 Sn2+ + 2 H2O ⇌ Sn2(OH)22+ + 2 H+

|

|–4.77

|

|–4.8

|–4.79 ± 0.05

|

|

3 Sn2+ + 4 H2O ⇌ Sn3(OH)42+ + 4 H+

|

|–6.88

|–5.6 ± 1.6

|–6.88

|–5.88 ± 0.05

|–5.60 ± 0.47

|−5.60 ± 0.47

Sn(OH)2(s) ⇌ Sn2+ + 2 OH

|

|

|

|–25.8

|–26.28 ± 0.08

|

|

SnO(s) + 2 H+ ⇌ Sn2+ + H2O

|

|1.76

|2.5± 0.5

|

|

|

|1.60 ± 0.15

SnO(s) + H2O ⇌ Sn2+ + 2 OH

|–26.2

|

|

|

|

|

|

SnO(s) + H2O ⇌ Sn(OH)2

|–5.3

|

|

|

|

|

|

SnO(s) + 2 H2O ⇌ Sn(OH)3 + H+

|–0.9

|

|

|

|

|

|

=Tin(IV)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Hummel et al., 2002

!Gamsjäger et al, 2012

!Brown and Ekberg, 2016

Sn4+ + 4 H2O ⇌ Sn(OH)4 + 4 H+

|

|

| 7.53 ± 0.12

Sn4+ + 5 H2O ⇌ Sn(OH)5 + 5 H+

|

|

|–1.07 ± 0.42

Sn4+ + 6 H2O ⇌ Sn(OH)62– + 6 H+

|

|

|–1.07 ± 0.42

Sn(OH)4 + H2O ⇌ Sn(OH)5 + H+

|–8.0 ± 0.3

|–8.60 ± 0.40

|

Sn(OH)4 + 2 H2O ⇌ Sn(OH)62– + 2 H+

|–18.4 ± 0.3

|–18.67 ± 0.30

|

SnO2(cr) + 2 H2O ⇌ Sn(OH)4

|–8.0 ± 0.2

|–8.06 ± 0.11

|

SnO2(am) + 2 H2O ⇌ Sn(OH)4

|–7.3 ± 0.3

|–7.22 ± 0.08

|

SnO2(s) + 4 H+ ⇌ Sn4+ + 2 H2O

|

|

|–15.59 ± 0.04

=Tungsten=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!NIST46

WO42– + H+ ⇌ HWO4

| 3.6

WO42– + 2 H+ ⇌ H2WO4

|5.8

6 WO42– + 7 H+ ⇌ HW6O215– + 3 H2O

|63.83

= Titanium(III) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Perrin et al., 1969{{Cite book |last=Perrin |first=D.D. |title=Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution |publisher=International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths |year=1969 |pages=208}}

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=151}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=433–442}}

Ti3+ + H2O ⇌ TiOH2+ + H+

| –1.29

| –2.2

| –1.65 ± 0.11

2 Ti3+ + 2 H2O ⇌ Ti2(OH)24+ + 2 H+

|

|–3.6

|–2.64 ± 0.10

=Titanium(IV)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016

Ti(OH)22+ + H2O ⇌ Ti(OH)3+ + H+

| ⩽–2.3

|

Ti(OH)22+ + 2 H2O ⇌ Ti(OH)4 + 2 H+

|–4.8

|

TiO2+ + H2O ⇌ TiOOH+ + H+

|

|–2.48 ± 0.10

TiO2+ + 2 H2O ⇌ TiO(OH)2 + 2 H+

|

|–5.49 ± 0.14

TiO2+ + 3 H2O ⇌ TiO(OH)3 + 3 H+

|

|–17.4 ± 0.5

TiO(OH)2 + H2O ⇌ TiO(OH)3 + H+

|

|–11.9 ±0.5

TiO2(c) +2 H2O ⇌ Ti(OH)4

|~ –4.8

|

TiO2(s) + H+ ⇌ TiOOH+

|

|–6.06 ± 0.30

TiO2(s) + H2O ⇌ TiO(OH)2

|

|–9.02 ± 0.02

TiO2 x H2O ⇌ Ti(OH)22+[OH]

|

|

TiO2(s) + 4 H+ ⇌ Ti4+ + 2 H2O

|

|–3.56 ± 0.10

=Uranium(IV)=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer,

1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=181}}

!Thoenen et

al., 2014{{Cite book |last=Thoenen |first=T. |url=https://www.psi.ch/sites/default/files/import/les/DatabaseEN/PSI-Bericht%252014-04_final_druckerei.pdf |title=The PSI/Nagra Chemical Thermodynamic Database 12/07 |last2=Hummel |first2=W. |last3=Berner |first3=U. |last4=Curti |first4=E. |publisher=Paul Scherrer Institut PSI |year=2014 |location=Villigen}}

!Brown and Ekberg,

2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |publication-date=336–349}}

!Grenthe et al.,

2020{{Cite book |last=Grenthe |first=I. |url=https://www.oecd-nea.org/upload/docs/application/pdf/2020-10/7500_second_update_of_u_np_pu_am_and_tc_web.pdf |title=Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium |last2=Gaona |first2=X. |last3=Plyasunov |first3=A.V. |last4=Rao |first4=L. |last5=Runde |first5=W.H. |last6=Grambow |first6=B. |last7=Konings |first7=R.J.M. |last8=Smith |first8=A.L. |last9=Moore |first9=E.E. |publisher=OECD Publishing |year=2020 |location=Paris}}

U4+ + H2O ⇌ UOH3+ + H+

|–0.65

|– 0.54 ± 0.06

| –0.58 ± 0.08

|– 0.54 ± 0.06

U4+ + 2 H2O ⇌ U(OH)22+ + 2 H+

|(–2.6)

|–1.1 ± 1.0

|–1.4 ± 0.2

|–1.9 ± 0.2

U4+ + 3 H2O ⇌ U(OH)3+ + 3 H+

|(–5.8)

|–4.7 ± 1.0

|–5.1 ± 0.3

|–5.2 ± 0.4

U4+ + 4 H2O ⇌ U(OH)4 + 4 H+

|(–10.3)

|–10.0 ± 1.4

|–10.4 ± 0.5

|–10.0 ± 1.4

U4+ + 5 H2O ⇌ U(OH)5 + 5 H+

|–16.0

|

|

|

UO2(am, hyd) + 4 H+ ⇌ U4+ + 2 H2O

|

|1.5 ± 1.0

|

|

UO2(am,hyd) + 2 H2O ⇌ U4+ + 4 OH

|

|

|–54.500 ± 1.000

|–54.500 ± 1.000

UO2(c) + 4 H+ ⇌ U4+ + 2 H2O

|–1.8

|

|

|

UO2(c) + 2 H2O ⇌ U4+ + 4 OH

|

|

|

|–60.860 ± 1.000

= Uranium(VI) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer,

1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cation |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=182}}

!Grenthe et

al., 1992{{Cite book |last=Grenthe |first=I. |url=https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/uranium.pdf |title=Chemical Thermodynamics of Uranium, Chemical Vol 1, |last2=Fuger |first2=J. |last3=Konings |first3=R.J.M. |last4=Lemire |first4=R.J. |last5=Muller |first5=A.B. |last6=Nguyen-Trung |first6=C. |last7=Wanner |first7=H. |publisher=OECD Publishing |year=1992 |location=Paris}}

!NIST46

!Brown and Ekberg,

2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |publication-date= |pages=350–379}}

!Grenthe et al.,

2020

UO22+ + H2O ⇌ UO2(OH)+ + H+

|–5.8

|–5.2 ± 0.3

|–5.9 ± 0.1

| –5.13 ± 0.04

|–5.25 ± 0.24

UO22+ + 2 H2O ⇌ UO2(OH)2 + 2 H+

|

|≤-10.3

|

|–12.15 ± 0.20

|–12.15 ± 0.07

UO22+ + 3 H2O ⇌ UO2(OH)3 + 3 H+

|

|–19.2 ± 0.4

|

|–20.25 ± 0.42

|–20.25 ± 0.42

UO22+ + 4 H2O ⇌ UO2(OH)42– + 4 H+

|

|–33 ± 2

|

|–32.40 ± 0.68

|–32.40 ± 0.68

2 UO22+ + 2 H2O ⇌ (UO2)2(OH)22+ + 2 H+

|–5.62

|–5.62 ± 0.04

|–5.58 ± 0.04

|–5.68 ± 0.05

|–5.62 ± 0.08

3 UO22+ + 5 H2O ⇌ (UO2)3(OH)5+ + 5 H+

|–15.63

|–15.55 ± 0.12

|–15.6

|–15.75 ± 0.12

|–15.55 ± 0.12

3 UO22+ + 4 H2O ⇌ (UO2)3(OH)42+ + 4 H+

|(–11.75)

|–11.9 ± 0.3

|

|–11.78 ± 0.05

|–11.9 ± 0.3

3 UO22+ + 7 H2O ⇌ (UO2)3(OH)7 + 7 H+

|

|–31 ± 2.0

|

|–32.2 ± 0.8

|–32.2 ± 0.8

4 UO22+ + 7 H2O ⇌ (UO2)4(OH)7+ + 7 H+

|

|–21.9 ± 1.0

|

|–22.1 ± 0.2

|–21.9 ± 1.0

2 UO22+ + H2O ⇌ (UO2)2(OH)3+ + H+

|

|–2.7 ± 1.0

|

|

|–2.7 ± 1.0

UO2(OH)2(s) + 2H+ ⇌ UO22+ + 2 H2O

|5.6

|

|6.0

|4.81 ± 0.20

|

UO3·2H2O(cr) + 2H+ ⇌ UO22+ + 3 H2O

|

|

|

|

|5.350 ± 0.130

= Vanadium(IV) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Brown and Ekberg, 2016

VO2+ + H2O ⇌ VO(OH)+ + H+

| –5.30 ± 0.13

2 VO2+ + 2 H2O ⇌ (VO)2(OH)22+ + 2 H+

|–6.71 ± 0.10

= Vanadium(V) =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=209}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=517–541}}

VO2+ + 2 H2O ⇌ VO(OH)3 + H+

| –3.3

|

VO2+ + 2 H2O ⇌ VO2(OH)2 + 2 H+

|–7.3

|–7.18 ± 0.12

10 VO2+ + 8 H2O ⇌ V10O26(OH)24– + 14 H+

|–10.7

|

VO2(OH)2 ⇌ VO3(OH)2– + H+

|–8.55

|

2 VO2(OH)2 ⇌ V2O6(OH)23– + H+ + H2O

|–6.53

|

VO3(OH)2– ⇌ VO43– + H+

|–14.26

|

2 VO3(OH)2– ⇌ V2O74– + H2O

|0.56

|

3 VO3(OH)2– + 3 H+⇌ V3O93– + 3 H2O

|31.81

|

V10O26(OH)24– ⇌ V10O27(OH)5– + 3 H+

|–3.6

|

V10O27(OH)5– ⇌ V10O286– + H+

|–6.15

|

VO2+ + H2O ⇌ VO2OH + H+

|

|–3.25 ± 0.1

VO2+ + 3 H2O ⇌ VO2(OH)32- + 3 H+

|

|–15.74 ± 0.19

VO2+ + 4 H2O ⇌ VO2(OH)43- + 4 H+

|

|–30.03 ± 0.24

2 VO2+ + 4 H2O ⇌ (VO2)2(OH)42- + 4 H+

|

|–11.66 ± 0.53

2 VO2+ + 5 H2O ⇌ (VO2)2(OH)53- + 5 H+

|

|–20.91 ± 0.22

2 VO2+ + 6 H2O ⇌ (VO2)2(OH)64- + 6 H+

|

|–32.43 ± 0.30

4 VO2+ + 8 H2O ⇌ (VO2)4(OH)84- + 8 H+

|

|–20.78 ± 0.33

4 VO2+ + 9 H2O ⇌ (VO2)4(OH)95- + 9 H+

|

|–31.85 ± 0.26

4 VO2+ + 10 H2O ⇌ (VO2)4(OH)106- + 10 H+

|

|–45.85 ± 0.26

5 VO2+ + 10 H2O ⇌ (VO2)5(OH)105- + 10 H+

|

|–27.02 ± 0.34

10 VO2+ + 14 H2O ⇌ (VO2)10(OH)144- + 14 H+

|

|–10.5 ± 0.3

10 VO2+ + 15 H2O ⇌ (VO2)10(OH)155- + 15 H+

|

|–15.73 ± 0.33

10 VO2+ + 16 H2O ⇌ (VO2)10(OH)166- + 16 H+

|

|–23.90 ± 0.35

{{sfrac|1|2}} V2O5(c) + H+ ⇌ VO2+ + {{sfrac|1|2}} H2O

|–0.66

|

V2O5(s) + 2 H+ ⇌ 2 VO2+ + H2O

|

|–0.64 ± 0.09

= Ytterbium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=247, 250−251 and 300−303}}

Yb3+ + H2O ⇌ YbOH2+ + H+

|−7.7

| −7.31 ± 0.18

Yb3+ + 2 H2O ⇌ Yb(OH)2+ + 2 H+

|(−15.8)

|

Yb3+ + 3 H2O ⇌ Yb(OH)3 + 3 H+

|(−24.1)

|

Yb3+ + 4 H2O ⇌ Yb(OH)4 + 4 H+

|−32.7

|

2 Yb3+ + 2 H2O ⇌ Yb2(OH)24+ + 2 H+

|

|−13.76 ± 0.20

3 Yb3+ + 5 H2O ⇌ Yb3(OH)54+ + 5 H+

|

|−30.6 ± 0.3

Yb(OH)3(s) + 3 H+ ⇌ Yb3+ + 3 H2O

|14.7

|15.35 ± 0.20

= Yttrium =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Brown and Ekberg, 2016

Y3+ + H2O ⇌ YOH2+ + H+

|–7.7

| –7.77 ± 0.06

Y3+ + 2 H2O ⇌ Y(OH)2+ + 2 H+

|(–16.4) [Estimation]

|

Y3+ + 3 H2O ⇌ Y(OH)3 + 3 H+

|(–26.0) [Estimation]

|

Y3+ + 4 H2O ⇌ Y(OH)4+ 4 H+

|–36.5

|

2 Y3+ + 2 H2O ⇌ Y2(OH)24+ + 2 H+

|–14.23

|–14.1 ± 0.2

3 Y3+ + 5 H2O ⇌ Y3(OH)54+ + 5 H+

|–31.6

|–32.7 ± 0.3

Y(OH)3(s) + 3 H+ ⇌ Y3+ + 3 H2O

|17.5

|17.32 ± 0.30

= Zinc =

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976{{Cite book |last=Baes |first=C.F. |title=The Hydrolysis of Cations |last2=Mesmer |first2=R.E. |publisher=Wiley |year=1976 |location=New York |pages=293}}

!Powell and Brown, 2013{{Cite journal |last=Powell |first=K.J. |last2=Brown |first2=P.L. |last3=Byrne |first3=R.H. |last4=Gajda |first4=T. |last5=Hefter |first5=G. |last6=Leuz |first6=A.-K. |last7=Sjöberg |first7=S. |last8=Wanner |first8=H. |date=2013 |title=Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)* |url=http://dx.doi.org/10.1351/PAC-REP-13-06-03 |journal=Pure and Applied Chemistry |volume=85 |pages=2249–2311}}

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C |publisher=Wiley |year=2016 |pages=676−700}}

Zn2+ + H2O ⇌ ZnOH+ + H+

| −8.96

|−8.96 ± 0.05

|−8.94 ± 0.06

Zn2+ + 2 H2O ⇌ Zn(OH)2 + 2 H+

|−16.9

|–17.82 ± 0.08

|−17.89 ± 0.15

Zn2+ + 3 H2O ⇌ Zn(OH)3 + 3 H+

|−28.4

|–28.05 ± 0.05

|−27.98 ± 0.10

Zn2+ + 4 H2O ⇌ Zn(OH)42- + 4 H+

|−41.2

|–40.41 ± 0.12

|−40.35 ± 0.22

2 Zn2+ + H2O ⇌ Zn2OH3+ + H+

|−9.0

|–7.9 ± 0.2

|−7.89 ± 0.31

2 Zn2+ + 6 H2O ⇌ Zn2(OH)62- + 6 H+

|−57.8

|

|

ZnO(s) + 2 H+ ⇌ Zn2+ + H2O

|11.14

|11.12 ± 0.05

|11.11 ± 0.10

ε-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O

|

|11.38 ± 0.20

|11.38± 0.20

β1-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O

|

|11.72 ± 0.04

|

β2-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O

|

|11.76 ± 0.04

|

γ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O

|

|11.70 ± 0.04

|

δ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O

|

|11.81 ± 0.04

|

=Zirconium=

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

class="wikitable"

|+

!Reaction

!Baes and Mesmer, 1976

!Thoenen et al., 2014

!Brown and Ekberg, 2016{{Cite book |last=Brown |first=P.L. |title=Hydrolysis of Metal Ions |last2=Ekberg |first2=C. |publisher=Wiley |year=2016 |pages=442–460}}

Zr4+ + H2O ⇌ ZrOH3+ + H+

| 0.32

|0.32 ± 0.22

|0.12 ± 0.12

Zr4+ + 2 H2O ⇌ Zr(OH)22+ + 2 H+

|(−1.7)*

|0.98 ± 1.06*

|−0.18 ± 0.17*

Zr4+ + 3 H2O ⇌ Zr(OH)3+ + 3 H+

|(−5.1)

|

|

Zr4+ + 4 H2O ⇌ Zr(OH)4 + 4 H+

|–9.7*

|–2.19 ± 0.70*

|−4.53 ± 0.37*

Zr4+ + 5 H2O ⇌ Zr(OH)5 + 5 H+

|–16.0

|

|

Zr4+ + 6 H2O ⇌ Zr(OH)62– + 6 H+

|

|–29± 0.70

|–30.5 ± 0.3

3 Zr4+ + 4 H2O ⇌ Zr3(OH)48+ + 4 H+

|–0.6

|0.4 ± 0.3

|0.90 ± 0.18

3 Zr4+ + 5 H2O ⇌ Zr3(OH)57+ + 5 H+

|3.70

|

|

3 Zr4+ + 9 H2O ⇌ Zr3(OH)93+ + 9 H+

|

|12.19 ± 0.20

|12.19 ± 0.20

4 Zr4+ + 8 H2O ⇌ Zr4(OH)88+ + 8 H+

|6.0

|6.52 ± 0.05

|6.52 ± 0.05

4 Zr4+ + 15 H2O ⇌ Zr4(OH)15+ + 15 H+

|

|12.58± 0.24

|

4 Zr4+ + 16 H2O ⇌ Zr4(OH)16 + 16 H+

|

|8.39± 0.80

|

ZrO2(s) + 4 H+ ⇌ Zr4+ + 2 H2O

|–1.9*

|

|–5.37 ± 0.42*

ZrO2(s, baddeleyite) + 4 H+ ⇌ Zr4+ + 2 H2O

|

|–7 ± 1.6

|

ZrO2(am) + 4 H+ ⇌ Zr4+ + 2 H2O

|

|–3.24± 0.10

|–2.97 ± 0.18

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.

References