Hyperbolic tetrahedral-octahedral honeycomb

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Tetrahedron-octahedron honeycomb

bgcolor=#e7dcc3|TypeCompact uniform honeycomb
Semiregular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{(3,4,3,3)} or {(3,3,4,3)}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|label4|branch|3ab|branch_10l}} or {{CDD|label4|branch|3ab|branch_01l}} or {{CDD|node_1|split1|nodes|split2-43|node}}
bgcolor=#e7dcc3|Cells{3,3} 40px
{3,4} 40px
bgcolor=#e7dcc3|Facestriangular {3}
bgcolor=#e7dcc3|Vertex figure80px
rhombicuboctahedron
bgcolor=#e7dcc3|Coxeter group[(4,3,3,3)]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

In the geometry of hyperbolic 3-space, the tetrahedron-octahedron honeycomb is a compact uniform honeycomb, constructed from octahedron and tetrahedron cells, in a rhombicuboctahedron vertex figure.

{{Honeycomb}}

It represents a semiregular honeycomb as defined by all regular cells, although from the Wythoff construction, rectified tetrahedral r{3,3}, becomes the regular octahedron {3,4}.

Images

class=wikitable

|+ Wide-angle perspective view

align=center

|480px
Centered on octahedron

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{isbn|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{isbn|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{isbn|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups

{{DEFAULTSORT:Order-4 Dodecahedral Honeycomb}}

Category:3-honeycombs