ITP method
{{Short description|Root-finding algorithm}}
{{Multiple issues|
{{Primary sources|date=November 2024}}
{{more citations needed|date=January 2021}}
{{Notability|date=May 2024}}
}}
In numerical analysis, the ITP method (Interpolate Truncate and Project method) is the first root-finding algorithm that achieves the superlinear convergence of the secant method{{Cite book|last1=Argyros|first1=I. K.|last2=Hernández-Verón|first2=M. A.|last3=Rubio|first3=M. J.|chapter=On the Convergence of Secant-Like Methods|date=2019|title=Current Trends in Mathematical Analysis and Its Interdisciplinary Applications|chapter-url=http://springer.nl.go.kr/chapter/10.1007/978-3-030-15242-0_5|language=en|pages=141–183|doi=10.1007/978-3-030-15242-0_5|isbn=978-3-030-15241-3|s2cid=202156085}}{{Dead link|date=August 2024 |bot=InternetArchiveBot |fix-attempted=yes }} while retaining the optimal{{Cite journal|last=Sikorski|first=K.|date=1982-02-01|title=Bisection is optimal|url=https://doi.org/10.1007/BF01459080|journal=Numerische Mathematik|language=en|volume=40|issue=1|pages=111–117|doi=10.1007/BF01459080|s2cid=119952605|issn=0945-3245|url-access=subscription}} worst-case performance of the bisection method.{{Cite journal|last1=Oliveira|first1=I. F. D.|last2=Takahashi|first2=R. H. C.|date=2020-12-06|title=An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality|url=https://doi.org/10.1145/3423597|journal=ACM Transactions on Mathematical Software|volume=47|issue=1|pages=5:1–5:24|doi=10.1145/3423597|s2cid=230586635 |issn=0098-3500|url-access=subscription}} It is also the first method with guaranteed average performance strictly better than the bisection method under any continuous distribution. In practice it performs better than traditional interpolation and hybrid based strategies (Brent's Method, Ridders, Illinois), since it not only converges super-linearly over well behaved functions but also guarantees fast performance under ill-behaved functions where interpolations fail.
The ITP method follows the same structure of standard bracketing strategies that keeps track of upper and lower bounds for the location of the root; but it also keeps track of the region where worst-case performance is kept upper-bounded. As a bracketing strategy, in each iteration the ITP queries the value of the function on one point and discards the part of the interval between two points where the function value shares the same sign. The queried point is calculated with three steps: it interpolates finding the regula falsi estimate, then it perturbs/truncates the estimate (similar to {{section link|Regula falsi|Improvements in regula falsi}}) and then projects the perturbed estimate onto an interval in the neighbourhood of the bisection midpoint. The neighbourhood around the bisection point is calculated in each iteration in order to guarantee minmax optimality (Theorem 2.1 of ). The method depends on three hyper-parameters and where is the golden ratio : the first two control the size of the truncation and the third is a slack variable that controls the size of the interval for the projection step.{{efn|1=For a more in-depth discussion of the hyper-parameters, see the documentation for [https://docs.rs/kurbo/0.8.1/kurbo/common/fn.solve_itp.html ITP in the kurbo library].}}
Root finding problem
Given a continuous function defined from to such that , where at the cost of one query one can access the values of on any given . And, given a pre-specified target precision , a root-finding algorithm is designed to solve the following problem with the least amount of queries as possible:
Problem Definition: Find such that , where satisfies .
This problem is very common in numerical analysis, computer science and engineering; and, root-finding algorithms are the standard approach to solve it. Often, the root-finding procedure is called by more complex parent algorithms within a larger context, and, for this reason solving root problems efficiently is of extreme importance since an inefficient approach might come at a high computational cost when the larger context is taken into account. This is what the ITP method attempts to do by simultaneously exploiting interpolation guarantees as well as minmax optimal guarantees of the bisection method that terminates in at most iterations when initiated on an interval .
The method
Given , and where is the golden ratio , in each iteration the ITP method calculates the point following three steps:
- [Interpolation Step] Calculate the bisection and the regula falsi points: and ;
- [Truncation Step] Perturb the estimator towards the center: where and ;
- [Projection Step] Project the estimator to minmax interval: where .
The value of the function on this point is queried, and the interval is then reduced to bracket the root by keeping the sub-interval with function values of opposite sign on each end.
= The algorithm =
The following algorithm (written in pseudocode) assumes the initial values of and are given and satisfy
Input:
Preprocessing:
While (
Calculating Parameters:
Interpolation:
Truncation:
If
Else
Projection:
If
Else
Updating Interval:
If
Elseif
Else
Output:
Example: Finding the root of a polynomial
Suppose that the ITP method is used to find a root of the polynomial
class="wikitable"
!Iteration ! ! ! ! |
style="text-align: left;"
| style="text-align: right;" |1 |1 |2 |1.43333333333333 | |
style="text-align: left;"
| style="text-align: right;" |2 |1.43333333333333 |2 |1.52713145056966 | style="text-align: right;" |0.0343383329048983 |
style="text-align: left;"
| style="text-align: right;" |3 |1.43333333333333 |1.52713145056966 |1.52009281150978 | style="text-align: right;" |
0.00764147709265051 |
style="text-align: left;"
| style="text-align: right;" |4 |1.52009281150978 |1.52713145056966 |1.52137899116052 | style="text-align: right;" |
4.25363464540141e-06 |
style="text-align: left;"
| style="text-align: right;" |5 |1.52137899116052 |1.52713145056966 |1.52138301273268 | style="text-align: right;" |1.96497878177659e-05 |
style="text-align: left;"
| style="text-align: right;" |6 |1.52137899116052 |1.52138301273268 | colspan="2" |← Stopping Criteria Satisfied |
This example can be compared to {{section link|Bisection method|Example: Finding the root of a polynomial}}. The ITP method required less than half the number of iterations than the bisection to obtain a more precise estimate of the root with no cost on the minmax guarantees. Other methods might also attain a similar speed of convergence (such as Ridders, Brent etc.) but without the minmax guarantees given by the ITP method.
Analysis
The main advantage of the ITP method is that it is guaranteed to require no more iterations than the bisection method when
= Worst case performance =
= Average performance =
= Asymptotic performance =
If the function
Software
See also
Notes
{{notelist}}
References
{{Reflist}}
External links
- [https://link.growkudos.com/1iwxps83474 An Improved Bisection Method], by [https://info.growkudos.com/ Kudos]
{{root-finding algorithms}}