Icositruncated dodecadodecahedron
{{Short description|Polyhedron with 44 faces}}
{{Uniform polyhedra db|Uniform polyhedron stat table|itDD}}
File:Icositruncated dodecadodecahedron.stl
In geometry, the icositruncated dodecadodecahedron or icosidodecatruncated icosidodecahedron is a nonconvex uniform polyhedron, indexed as U45.
Convex hull
Its convex hull is a nonuniform truncated icosidodecahedron.
class=wikitable width=200 |
valign=top
|100px |100px |100px |
Cartesian coordinates
Cartesian coordinates for the vertices of an icositruncated dodecadodecahedron are all the even permutations of
\Bigl(& \pm\bigl[2-\frac{1}{\varphi}\bigr],& \pm\,1,& \pm\bigl[2+\varphi\bigr] &\Bigr), \\
\Bigl(& \pm\,1,& \pm\,\frac{1}{\varphi^2},& \pm\bigl[3\varphi-1\bigr] &\Bigr), \\
\Bigl(& \pm\,2,& \pm\,\frac{2}{\varphi},& \pm\,2\varphi &\Bigr), \\
\Bigl(& \pm\,3,& \pm\,\frac{1}{\varphi^2},& \pm\,\varphi^2 &\Bigr), \\
\Bigl(& \pm\,\varphi^2,& \pm\,1,& \pm\bigl[3\varphi-2\bigr] &\Bigr),
\end{array}
where is the golden ratio.
{{-}}
Related polyhedra
= Tridyakis icosahedron=
{{Uniform polyhedra db|Uniform dual polyhedron stat table|itDD}}
The tridyakis icosahedron is the dual polyhedron of the icositruncated dodecadodecahedron. It has 44 vertices, 180 edges, and 120 scalene triangular faces.
See also
- Catalan solid Duals to convex uniform polyhedra
- Uniform polyhedra
- List of uniform polyhedra
References
- {{Citation | last1=Wenninger | first1=Magnus | author1-link=Magnus Wenninger | title=Dual Models | publisher=Cambridge University Press | isbn=978-0-521-54325-5 |mr=730208 | year=1983}} Photo on page 96, Dorman Luke construction and stellation pattern on page 97.
External links
- {{mathworld | urlname = IcositruncatedDodecadodecahedron| title = Icositruncated dodecadodecahedron}}
{{Nonconvex polyhedron navigator}}
{{Polyhedron-stub}}