Icositruncated dodecadodecahedron

{{Short description|Polyhedron with 44 faces}}

{{Uniform polyhedra db|Uniform polyhedron stat table|itDD}}

File:Icositruncated dodecadodecahedron.stl

In geometry, the icositruncated dodecadodecahedron or icosidodecatruncated icosidodecahedron is a nonconvex uniform polyhedron, indexed as U45.

Convex hull

Its convex hull is a nonuniform truncated icosidodecahedron.

class=wikitable width=200
valign=top

|100px
Truncated icosidodecahedron

|100px
Convex hull

|100px
Icositruncated dodecadodecahedron

Cartesian coordinates

Cartesian coordinates for the vertices of an icositruncated dodecadodecahedron are all the even permutations of

\begin{array}{crrlc}

\Bigl(& \pm\bigl[2-\frac{1}{\varphi}\bigr],& \pm\,1,& \pm\bigl[2+\varphi\bigr] &\Bigr), \\

\Bigl(& \pm\,1,& \pm\,\frac{1}{\varphi^2},& \pm\bigl[3\varphi-1\bigr] &\Bigr), \\

\Bigl(& \pm\,2,& \pm\,\frac{2}{\varphi},& \pm\,2\varphi &\Bigr), \\

\Bigl(& \pm\,3,& \pm\,\frac{1}{\varphi^2},& \pm\,\varphi^2 &\Bigr), \\

\Bigl(& \pm\,\varphi^2,& \pm\,1,& \pm\bigl[3\varphi-2\bigr] &\Bigr),

\end{array}

where \varphi = \tfrac{1+\sqrt 5}{2} is the golden ratio.

{{-}}

Related polyhedra

= Tridyakis icosahedron=

{{Uniform polyhedra db|Uniform dual polyhedron stat table|itDD}}

The tridyakis icosahedron is the dual polyhedron of the icositruncated dodecadodecahedron. It has 44 vertices, 180 edges, and 120 scalene triangular faces.

See also

References

  • {{Citation | last1=Wenninger | first1=Magnus | author1-link=Magnus Wenninger | title=Dual Models | publisher=Cambridge University Press | isbn=978-0-521-54325-5 |mr=730208 | year=1983}} Photo on page 96, Dorman Luke construction and stellation pattern on page 97.