Igusa zeta function

{{short description|Type of generating function in mathematics}}

In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, modulo p, p2, p3, and so on.

Definition

For a prime number p let K be a p-adic field, i.e. [K: \mathbb{Q}_p]<\infty , R the valuation ring and P the maximal ideal. For z \in K we denote by \operatorname{ord}(z) the valuation of z, \mid z \mid = q^{-\operatorname{ord}(z)}, and ac(z)=z \pi^{-\operatorname{ord}(z)} for a uniformizing parameter π of R.

Furthermore let \phi : K^n \to \mathbb{C} be a Schwartz–Bruhat function, i.e. a locally constant function with compact support and let \chi be a character of R^\times.

In this situation one associates to a non-constant polynomial f(x_1, \ldots, x_n) \in K[x_1,\ldots,x_n] the Igusa zeta function

: Z_\phi(s,\chi) = \int_{K^n} \phi(x_1,\ldots,x_n) \chi(ac(f(x_1,\ldots,x_n))) |f(x_1,\ldots,x_n)|^s \, dx

where s \in \mathbb{C}, \operatorname{Re}(s)>0, and dx is Haar measure so normalized that R^n has measure 1.

Igusa's theorem

{{harvs|txt|authorlink=Jun-Ichi Igusa|first=Jun-Ichi|last=Igusa|year=1974}} showed that Z_\phi (s,\chi) is a rational function in t=q^{-s}. The proof uses Heisuke Hironaka's theorem about the resolution of singularities. Later, an entirely different proof was given by Jan Denef using p-adic cell decomposition. Little is known, however, about explicit formulas. (There are some results about Igusa zeta functions of Fermat varieties.)

Congruences modulo powers of ''P''

Henceforth we take \phi to be the characteristic function of R^n and \chi to be the trivial character. Let N_i denote the number of solutions of the congruence

:f(x_1,\ldots,x_n) \equiv 0 \mod P^i.

Then the Igusa zeta function

: Z(t)= \int_{R^n} |f(x_1,\ldots,x_n)|^s \, dx

is closely related to the Poincaré series

: P(t)= \sum_{i=0}^{\infty} q^{-in}N_i t^i

by

: P(t)= \frac{1-t Z(t)}{1-t}.

References

  • {{Citation |last=Igusa |first=Jun-Ichi |year=1974 |title=Complex powers and asymptotic expansions. I. Functions of certain types |journal=Journal für die reine und angewandte Mathematik |volume=1974 |issue=268–269 |pages=110–130 |doi=10.1515/crll.1974.268-269.110 | zbl=0287.43007 }}
  • Information for this article was taken from [http://www.numdam.org/item/SB_1990-1991__33__359_0 J. Denef, Report on Igusa's Local Zeta Function, Séminaire Bourbaki 43 (1990-1991), exp. 741; Astérisque 201-202-203 (1991), 359-386]

Category:Zeta and L-functions

Category:Diophantine geometry