Incomplete Bessel functions
{{Multiple issues|{{more citations needed|date=January 2021}}{{notability|date=January 2020}}}}
In mathematics, the incomplete Bessel functions are types of special functions which act as a type of extension from the complete-type of Bessel functions.
Definition
The incomplete Bessel functions are defined as the same delay differential equations of the complete-type Bessel functions:
:
:
:
:
:
:
And the following suitable extension forms of delay differential equations from that of the complete-type Bessel functions:
:
:
:
:
:
:
Where the new parameter defines the integral bound of the upper-incomplete form and lower-incomplete form of the modified Bessel function of the second kind:{{cite journal |last1=Jones |first1=D. S. |title=Incomplete Bessel functions. I |journal=Proceedings of the Edinburgh Mathematical Society |date=February 2007 |volume=50 |issue=1 |pages=173–183 |doi=10.1017/S0013091505000490 |doi-access = free }}
:
:
Properties
:
:
: for integer
:
:
:
:
: for non-integer
:
:
:
:
: for non-integer
: for non-integer
Differential equations
satisfies the inhomogeneous Bessel's differential equation
:
Both , , and satisfy the partial differential equation
:
Both and satisfy the partial differential equation
:
Integral representations
Base on the preliminary definitions above, one would derive directly the following integral forms of , :
:
J_v(z,w)&=J_v(z)+\dfrac{1}{\pi i}\left(\int_0^we^{\frac{v\pi i}{2}-iz\cosh t}\cosh vt~dt-\int_0^we^{iz\cosh t-\frac{v\pi i}{2}}\cosh vt~dt\right)
\\&=J_v(z)+\dfrac{1}{\pi i}\left(\int_0^w\cos\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt-i\int_0^w\sin\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt\right.\\
&\quad\quad\quad\quad\quad\quad\left.-\int_0^w\cos\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt-i\int_0^w\sin\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt\right)
\\&=J_v(z)+\dfrac{1}{\pi i}\left(-2i\int_0^w\sin\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt\right)
\\&=J_v(z)-\dfrac{2}{\pi}\int_0^w\sin\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt\end{align}
:
Y_v(z,w)&=Y_v(z)+\dfrac{1}{\pi}\left(\int_0^we^{\frac{v\pi i}{2}-iz\cosh t}\cosh vt~dt+\int_0^we^{iz\cosh t-\frac{v\pi i}{2}}\cosh vt~dt\right)
\\&=Y_v(z)+\dfrac{1}{\pi}\left(\int_0^w\cos\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt-i\int_0^w\sin\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt\right.\\
&\quad\quad\quad\quad\quad\quad\left.+\int_0^w\cos\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt+i\int_0^w\sin\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt\right)
\\&=Y_v(z)+\dfrac{2}{\pi}\int_0^w\cos\left(z\cosh t-\dfrac{v\pi}{2}\right)\cosh vt~dt\end{align}
With the Mehler–Sonine integral expressions of and mentioned in Digital Library of Mathematical Functions,{{dlmf|id=10.9.8|title=Bessel Functions|first=R. B. |last=Paris}}
we can further simplify to and , but the issue is not quite good since the convergence range will reduce greatly to .
References
{{Reflist}}
External links
- {{cite book |last1=Agrest |first1=Matest M. |last2=Maksimov |first2=Michail S. |title=Theory of Incomplete Cylindrical Functions and their Applications |date=1971 |publisher=Springer-Verlag Berlin Heidelberg |location=Berlin, Heidelberg |isbn=978-3-642-65023-9}}
- {{cite journal |last1=Cicchetti |first1=R. |last2=Faraone |first2=A. |title=Incomplete Hankel and Modified Bessel Functions: A Class of Special Functions for Electromagnetics |journal=IEEE Transactions on Antennas and Propagation |date=December 2004 |volume=52 |issue=12 |pages=3373–3389 |doi=10.1109/TAP.2004.835269|bibcode=2004ITAP...52.3373C |s2cid=25089438 }}
- {{cite journal |last1=Jones |first1=D. S. |title=Incomplete Bessel functions. II. Asymptotic expansions for large argument |journal=Proceedings of the Edinburgh Mathematical Society |date=October 2007 |volume=50 |issue=3 |pages=711–723 |doi=10.1017/S0013091505000908|doi-access=free }}