Information matrix test

In econometrics, the information matrix test is used to determine whether a regression model is misspecified. The test was developed by Halbert White,{{Cite journal |last1=White|first1=Halbert|title=Maximum Likelihood Estimation of Misspecified Models |journal=Econometrica |date=1982 |volume=50 |issue=1 |pages=1–25 |doi=10.2307/1912526 |jstor=1912526 }} who observed that in a correctly specified model and under standard regularity assumptions, the Fisher information matrix can be expressed in either of two ways: as the outer product of the gradient of the log-likelihood function, or as a function of its Hessian matrix.

Consider a linear model \mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{u}, where the errors \mathbf{u} are assumed to be distributed \mathrm{N}(0, \sigma^2 \mathbf{I}). If the parameters \beta and \sigma^2 are stacked in the vector \mathbf{\theta}^{\mathsf{T}} = \begin{bmatrix} \beta & \sigma^2 \end{bmatrix}, the resulting log-likelihood function is

:\ell (\mathbf{\theta}) = - \frac{n}{2} \log \sigma^2 - \frac{1}{2 \sigma^2} \left( \mathbf{y} - \mathbf{X} \mathbf{\beta} \right)^{\mathsf{T}} \left( \mathbf{y} - \mathbf{X} \mathbf{\beta} \right)

The information matrix can then be expressed as

: \mathbf{I} (\mathbf{\theta}) = \operatorname{E} \left[ \left( \frac{\partial \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} } \right) \left( \frac{\partial \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} } \right)^{\mathsf{T}} \right]

that is the expected value of the outer product of the gradient or score. Second, it can be written as the negative of the Hessian matrix of the log-likelihood function

: \mathbf{I} (\mathbf{\theta}) = - \operatorname{E} \left[ \frac{\partial^2 \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} \, \partial \mathbf{\theta}^{\mathsf{T}}} \right]

If the model is correctly specified, both expressions should be equal. Combining the equivalent forms yields

: \mathbf{\Delta}(\mathbf{\theta}) = \sum_{i=1}^n \left[ \frac{\partial^2 \ell(\mathbf{\theta}) }{ \partial \mathbf{\theta} \, \partial \mathbf{\theta}^{\mathsf{T}} } + \frac{\partial \ell(\mathbf{\theta}) }{ \partial \mathbf{\theta} } \frac{\partial \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} } \right]

where \mathbf{\Delta} (\mathbf{\theta}) is an (r \times r) random matrix, where r is the number of parameters. White showed that the elements of n^{-1/2} \mathbf{\Delta} ( \mathbf{\hat{\theta}} ), where \mathbf{\hat{\theta}} is the MLE, are asymptotically normally distributed with zero means when the model is correctly specified.{{cite book |first=L. G. |last=Godfrey |author-link=Leslie G. Godfrey |title=Misspecification Tests in Econometrics |publisher= Cambridge University Press |year=1988 |isbn=0-521-26616-5 |pages=35–37 |url=https://books.google.com/books?id=apXgcgoy7OgC&pg=PA35 }} In small samples, however, the test generally performs poorly.{{cite journal |first=Chris |last=Orme |title=The Small-Sample Performance of the Information-Matrix Test |journal=Journal of Econometrics |volume=46 |issue=3 |year=1990 |pages=309–331 |doi=10.1016/0304-4076(90)90012-I }}

References

{{Reflist}}

Further reading

  • {{cite book |first1=W. |last1=Krämer |first2=H. |last2=Sonnberger |title=The Linear Regression Model Under Test |location=Heidelberg |publisher=Physica-Verlag |year=1986 |isbn=3-7908-0356-1 |pages=105–110 |url=https://books.google.com/books?id=NSvqCAAAQBAJ&pg=PA105 }}
  • {{cite book |first=Halbert |last=White |chapter=Information Matrix Testing |title=Estimation, Inference and Specification Analysis |location=New York |publisher=Cambridge University Press |year=1994 |isbn=0-521-25280-6 |pages=300–344 |chapter-url=https://books.google.com/books?id=hnNpQSf7ZlAC&pg=PA300 }}

Category:Statistical tests

Category:Regression diagnostics