Interpolative decomposition

{{no footnotes|date=November 2016}}

In numerical analysis, interpolative decomposition (ID) factors a matrix as the product of two matrices, one of which contains selected columns from the original matrix, and the other of which has a subset of columns consisting of the identity matrix and all its values are no greater than 2 in absolute value.

Definition

Let A be an m \times n matrix of rank r . The matrix A can be written as

: A = A_{(:,J)} X , \,

where

  • J is a subset of r indices from \{ 1 ,\ldots, n \};
  • The m \times r matrix A_{(:,J)} represents J's columns of A;
  • X is an r \times n matrix, all of whose values are less than 2 in magnitude. X has an r \times r identity submatrix.

Note that a similar decomposition can be done using the rows of A instead of its columns.

Example

Let A be the 3 \times 3 matrix of rank 2:

:

A =

\begin{bmatrix}

34 & 58 & 52 \\

59 & 89 & 80 \\

17 & 29 & 26

\end{bmatrix}.

If

:

J = \begin{bmatrix}

2 & 1

\end{bmatrix},

then

:

A =

\begin{bmatrix}

58 & 34 \\

89 & 59 \\

29 & 17

\end{bmatrix}

\begin{bmatrix}

0 & 1 & \frac{29}{33} \\

1 & 0 & \frac{1}{33}

\end{bmatrix} \approx

\begin{bmatrix}

58 & 34 \\

89 & 59 \\

29 & 17

\end{bmatrix}

\begin{bmatrix}

0 & 1 & 0.8788 \\

1 & 0 & 0.0303

\end{bmatrix}.

Notes

References

  • Cheng, Hongwei, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir Rokhlin. "[https://amath.colorado.edu/faculty/martinss/Pubs/2004_skeletonization.pdf On the compression of low rank matrices.]" SIAM Journal on Scientific Computing 26, no. 4 (2005): 1389–1404.
  • Liberty, E., Woolfe, F., Martinsson, P. G., Rokhlin, V., & Tygert, M. (2007). [http://www.pnas.org/content/104/51/20167.full.pdf+html Randomized algorithms for the low-rank approximation of matrices]. Proceedings of the National Academy of Sciences, 104(51), 20167–20172.

Category:Matrix decompositions

Category:Numerical linear algebra