Interpolative decomposition
{{no footnotes|date=November 2016}}
In numerical analysis, interpolative decomposition (ID) factors a matrix as the product of two matrices, one of which contains selected columns from the original matrix, and the other of which has a subset of columns consisting of the identity matrix and all its values are no greater than 2 in absolute value.
Definition
Let be an matrix of rank . The matrix can be written as
:
where
- is a subset of indices from
- The matrix represents 's columns of
- is an matrix, all of whose values are less than 2 in magnitude. has an identity submatrix.
Note that a similar decomposition can be done using the rows of instead of its columns.
Example
Let be the matrix of rank 2:
:
A =
\begin{bmatrix}
34 & 58 & 52 \\
59 & 89 & 80 \\
17 & 29 & 26
\end{bmatrix}.
If
:
J = \begin{bmatrix}
2 & 1
\end{bmatrix},
then
:
A =
\begin{bmatrix}
58 & 34 \\
89 & 59 \\
29 & 17
\end{bmatrix}
\begin{bmatrix}
0 & 1 & \frac{29}{33} \\
1 & 0 & \frac{1}{33}
\end{bmatrix} \approx
\begin{bmatrix}
58 & 34 \\
89 & 59 \\
29 & 17
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0.8788 \\
1 & 0 & 0.0303
\end{bmatrix}.
Notes
References
- Cheng, Hongwei, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir Rokhlin. "[https://amath.colorado.edu/faculty/martinss/Pubs/2004_skeletonization.pdf On the compression of low rank matrices.]" SIAM Journal on Scientific Computing 26, no. 4 (2005): 1389–1404.
- Liberty, E., Woolfe, F., Martinsson, P. G., Rokhlin, V., & Tygert, M. (2007). [http://www.pnas.org/content/104/51/20167.full.pdf+html Randomized algorithms for the low-rank approximation of matrices]. Proceedings of the National Academy of Sciences, 104(51), 20167–20172.