Intersection (set theory)

{{Short description|Set of elements common to all of some sets}}

{{Broader|Intersection (mathematics)}}

{{Infobox mathematical statement

| name = Intersection

| image = Venn0001.svg

| caption = The intersection of two sets A and B, represented by circles. A \cap B is in red.

| type = Set operation

| field = Set theory

| statement = The intersection of A and B is the set A \cap B of elements that lie in both set A and set B.

| symbolic statement = A \cap B = \{ x: x \in A \text{ and } x \in B\}

}}

In set theory, the intersection of two sets A and B, denoted by A \cap B,{{Cite web|title=Intersection of Sets|url=http://web.mnstate.edu/peil/MDEV102/U1/S3/Intersection4.htm|access-date=2020-09-04|website=web.mnstate.edu|archive-date=2020-08-04|archive-url=https://web.archive.org/web/20200804163657/http://web.mnstate.edu/peil/MDEV102/U1/S3/Intersection4.htm|url-status=dead}} is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A.{{cite web|url=http://people.richland.edu/james/lecture/m170/ch05-rul.html|title=Stats: Probability Rules|publisher=People.richland.edu|access-date=2012-05-08}}

Notation and terminology

Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example:

\{1,2,3\}\cap\{2,3,4\}=\{2,3\}

\{1,2,3\}\cap\{4,5,6\}=\varnothing

\Z\cap\N=\N

\{x\in\R:x^2=1\}\cap\N=\{1\}

The intersection of more than two sets (generalized intersection) can be written as:

\bigcap_{i=1}^n A_i

which is similar to capital-sigma notation.

For an explanation of the symbols used in this article, refer to the table of mathematical symbols.

Definition

File:Venn 0000 0001.svg

File:Venn diagram gr la ru.svg, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation]]

File:PolygonsSetIntersection.svg

The intersection of two sets A and B, denoted by A \cap B,{{Cite web|title=Set Operations {{!}} Union {{!}} Intersection {{!}} Complement {{!}} Difference {{!}} Mutually Exclusive {{!}} Partitions {{!}} De Morgan's Law {{!}} Distributive Law {{!}} Cartesian Product|url=https://www.probabilitycourse.com/chapter1/1_2_2_set_operations.php|access-date=2020-09-04|website=www.probabilitycourse.com}} is the set of all objects that are members of both the sets A and B.

In symbols:

A \cap B = \{ x: x \in A \text{ and } x \in B\}.

That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B.

For example:

  • The intersection of the sets {1, 2, 3} and {2, 3, 4} is {2, 3}.
  • The number 9 is {{em|not}} in the intersection of the set of prime numbers {2, 3, 5, 7, 11, ...} and the set of odd numbers {1, 3, 5, 7, 9, 11, ...}, because 9 is not prime.

=Intersecting and disjoint sets=

We say that {{em|{{visible anchor|A intersects (meets) B|Intersects|To intersect|Meets|To meet}}}} if there exists some x that is an element of both A and B, in which case we also say that {{em|A intersects (meets) B at x}}. Equivalently, A intersects B if their intersection A \cap B is an {{em|inhabited set}}, meaning that there exists some x such that x \in A \cap B.

We say that {{em|A and B are disjoint}} if A does not intersect B. In plain language, they have no elements in common. A and B are disjoint if their intersection is empty, denoted A \cap B = \varnothing.

For example, the sets \{1, 2\} and \{3, 4\} are disjoint, while the set of even numbers intersects the set of multiples of 3 at the multiples of 6.

Algebraic properties

{{See also|List of set identities and relations|Algebra of sets}}

Binary intersection is an associative operation; that is, for any sets A, B, and C, one has

A \cap (B \cap C) = (A \cap B) \cap C.Thus the parentheses may be omitted without ambiguity: either of the above can be written as A \cap B \cap C. Intersection is also commutative. That is, for any A and B, one hasA \cap B = B \cap A.

The intersection of any set with the empty set results in the empty set; that is, that for any set A,

A \cap \varnothing = \varnothing

Also, the intersection operation is idempotent; that is, any set A satisfies that A \cap A = A. All these properties follow from analogous facts about logical conjunction.

Intersection distributes over union and union distributes over intersection. That is, for any sets A, B, and C, one has

\begin{align}

A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \\

A \cup (B \cap C) = (A \cup B) \cap (A \cup C)

\end{align}

Inside a universe U, one may define the complement A^c of A to be the set of all elements of U not in A. Furthermore, the intersection of A and B may be written as the complement of the union of their complements, derived easily from De Morgan's laws:A \cap B = \left(A^{c} \cup B^{c}\right)^c

Arbitrary intersections

{{Further information|Iterated binary operation}}

The most general notion is the intersection of an arbitrary {{em|nonempty}} collection of sets.

If M is a nonempty set whose elements are themselves sets, then x is an element of the {{em|intersection}} of M if and only if for every element A of M, x is an element of A.

In symbols:

\left( x \in \bigcap_{A \in M} A \right) \Leftrightarrow \left( \forall A \in M, \ x \in A \right).

The notation for this last concept can vary considerably. Set theorists will sometimes write "\bigcap M", while others will instead write "{\bigcap}_{A \in M} A".

The latter notation can be generalized to "{\bigcap}_{i \in I} A_i", which refers to the intersection of the collection \left\{ A_i : i \in I \right\}.

Here I is a nonempty set, and A_i is a set for every i \in I.

In the case that the index set I is the set of natural numbers, notation analogous to that of an infinite product may be seen:

\bigcap_{i=1}^{\infty} A_i.

When formatting is difficult, this can also be written "A_1 \cap A_2 \cap A_3 \cap \cdots". This last example, an intersection of countably many sets, is actually very common; for an example, see the article on σ-algebras.

Nullary intersection

File:Variadic logical AND.svg of the arguments in parentheses

The conjunction of no argument is the tautology (compare: empty product); accordingly the intersection of no set is the universe.]]

In the previous section, we excluded the case where M was the empty set (\varnothing). The reason is as follows: The intersection of the collection M is defined as the set (see set-builder notation)

\bigcap_{A \in M} A = \{x : \text{ for all } A \in M, x \in A\}.

If M is empty, there are no sets A in M, so the question becomes "which x's satisfy the stated condition?" The answer seems to be {{em|every possible x}}. When M is empty, the condition given above is an example of a vacuous truth. So the intersection of the empty family should be the universal set (the identity element for the operation of intersection),{{cite book|last=Megginson|first=Robert E.|author-link=Robert Megginson|title=An introduction to Banach space theory|series=Graduate Texts in Mathematics|volume=183|publisher=Springer-Verlag|location=New York|year=1998|pages=xx+596|isbn=0-387-98431-3|chapter=Chapter 1}}

but in standard (ZF) set theory, the universal set does not exist.

However, when restricted to the context of subsets of a given fixed set X, the notion of the intersection of an empty collection of subsets of X is well-defined. In that case, if M is empty, its intersection is \bigcap M=\bigcap\varnothing=\{x\in X: x\in A \text{ for all }A\in\varnothing\}. Since all x\in X vacuously satisfy the required condition, the intersection of the empty collection of subsets of X is all of X. In formulas, \bigcap\varnothing=X. This matches the intuition that as collections of subsets become smaller, their respective intersections become larger; in the extreme case, the empty collection has an intersection equal to the whole underlying set.

Also, in type theory x is of a prescribed type \tau, so the intersection is understood to be of type \mathrm{set}\ \tau (the type of sets whose elements are in \tau), and we can define \bigcap_{A \in \empty} A to be the universal set of \mathrm{set}\ \tau (the set whose elements are exactly all terms of type \tau).

See also

  • {{annotated link|Algebra of sets}}
  • {{annotated link|Cardinality}}
  • {{annotated link|Complement (set theory)|Complement}}
  • {{annotated link|Intersection (Euclidean geometry)}}
  • {{annotated link|Intersection graph}}
  • {{annotated link|Intersection theory}}
  • {{annotated link|List of set identities and relations}}
  • {{annotated link|Logical conjunction}}
  • {{annotated link|MinHash}}
  • {{annotated link|Naive set theory}}
  • {{annotated link|Symmetric difference}}
  • {{annotated link|Union (set theory)|Union}}

References

{{reflist}}

Further reading

  • {{cite book|author-link=Keith J. Devlin|last=Devlin|first=K. J.|title=The Joy of Sets: Fundamentals of Contemporary Set Theory|edition=Second|publisher=Springer-Verlag|location=New York, NY|year=1993|isbn=3-540-94094-4}}
  • {{cite book|last=Munkres|first=James R.|author-link=James Munkres|title=Topology|edition=Second|location=Upper Saddle River|publisher=Prentice Hall|chapter=Set Theory and Logic|year=2000|isbn=0-13-181629-2}}
  • {{cite book|title=Discrete Mathematics and Its Applications|first=Kenneth|last=Rosen|location=Boston|publisher=McGraw-Hill|year=2007|edition=Sixth|isbn=978-0-07-322972-0|chapter=Basic Structures: Sets, Functions, Sequences, and Sums}}