Invex function

In vector calculus, an invex function is a differentiable function f from \mathbb{R}^n to \mathbb{R} for which there exists a vector valued function \eta such that

:f(x) - f(u) \geq \eta(x, u) \cdot \nabla f(u), \,

for all x and u.

Invex functions were introduced by Hanson as a generalization of convex functions.{{Cite journal|last=Hanson|first=Morgan A.|date=1981|title=On sufficiency of the Kuhn-Tucker conditions|journal=Journal of Mathematical Analysis and Applications|volume=80|issue=2|pages=545–550|doi=10.1016/0022-247X(81)90123-2|issn=0022-247X|hdl=10338.dmlcz/141569|hdl-access=free}} Ben-Israel and Mond provided a simple proof that a function is invex if and only if every stationary point is a global minimum, a theorem first stated by Craven and Glover.{{Cite journal|last1=Ben-Israel|first1=A.|last2=Mond|first2=B.|date=1986|title=What is invexity?|journal=The ANZIAM Journal|language=en|volume=28|issue=1|pages=1–9|doi=10.1017/S0334270000005142|issn=1839-4078|doi-access=free}}{{Cite journal|last1=Craven|first1=B. D.|last2=Glover|first2=B. M.|date=1985|title=Invex functions and duality|journal=Journal of the Australian Mathematical Society|language=en|volume=39|issue=1|pages=1–20|doi=10.1017/S1446788700022126|issn=0263-6115|doi-access=free}}

Hanson also showed that if the objective and the constraints of an optimization problem are invex with respect to the same function \eta(x,u) , then the Karush–Kuhn–Tucker conditions are sufficient for a global minimum.

Type I invex functions

A slight generalization of invex functions called Type I invex functions are the most general class of functions for which the Karush–Kuhn–Tucker conditions are necessary and sufficient for a global minimum.{{Cite journal|last=Hanson|first=Morgan A.|date=1999|title=Invexity and the Kuhn–Tucker Theorem|journal=Journal of Mathematical Analysis and Applications|volume=236|issue=2|pages=594–604|doi=10.1006/jmaa.1999.6484|issn=0022-247X|doi-access=free}} Consider a mathematical program of the form

\begin{array}{rl}

\min & f(x)\\

\text{s.t.} & g(x)\leq0

\end{array}

where f:\mathbb{R}^n\to\mathbb{R} and g:\mathbb{R}^n\to\mathbb{R}^m are differentiable functions. Let F=\{x\in\mathbb{R}^n\;|\;g(x)\leq0\} denote the feasible region of this program. The function f is a Type I objective function and the function g is a Type I constraint function at x_0 with respect to \eta if there exists a vector-valued function \eta defined on F such that

f(x)-f(x_0)\geq\eta(x)\cdot\nabla{f(x_0)}

and

-g(x_0)\geq\eta(x)\cdot\nabla{g(x_0)}

for all x\in{F}.{{Cite journal|last1=Hanson|first1=M. A.|last2=Mond|first2=B.|date=1987|title=Necessary and sufficient conditions in constrained optimization|journal=Mathematical Programming|language=en|volume=37|issue=1|pages=51–58|doi=10.1007/BF02591683|s2cid=206818360 |issn=1436-4646}} Note that, unlike invexity, Type I invexity is defined relative to a point x_0.

Theorem (Theorem 2.1 in): If f and g are Type I invex at a point x^* with respect to \eta , and the Karush–Kuhn–Tucker conditions are satisfied at x^* , then x^* is a global minimizer of f over F .

== E-invex function ==

Let E from \mathbb{R}^n to \mathbb{R}^{n} and f from \mathbb{M} to \mathbb{R} be an E-differentiable function on a nonempty open set \mathbb{M} \subset \mathbb{R}^n. Then f is said to be an E-invex function at u if there exists a vector valued function \eta such that

:(f\circ E)(x) - (f\circ E)(u) \geq \nabla (f\circ E)(u) \cdot \eta(E(x), E(u)) , \,

for all x and u in \mathbb{M}.

E-invex functions were introduced by Abdulaleem as a generalization of differentiable convex functions.{{Cite journal|last=Abdulaleem|first=Najeeb|date=2019|title=E-invexity and generalized E-invexity in E-differentiable multiobjective programming |journal=ITM Web of Conferences|volume=24|issue=1|article-number=01002|doi=10.1051/itmconf/20192401002 |doi-access=free}}

E-type I Functions

Let E: \mathbb{R}^n \to \mathbb{R}^n , and M \subset \mathbb{R}^n be an open E-invex set. A vector-valued pair (f, g) , where f and g represent objective and constraint functions respectively, is said to be E-type I with respect to a vector-valued function \eta: M \times M \to \mathbb{R}^n , at u \in M , if the following inequalities hold for all x \in F_E=\{x\in\mathbb{R}^n\;|\;g(E(x))\leq 0\} :

f_i(E(x)) - f_i(E(u)) \geq \nabla f_i(E(u)) \cdot \eta(E(x), E(u)),

-g_j(E(u)) \geq \nabla g_j(E(u)) \cdot \eta(E(x), E(u)).

= Remark 1. =

If f and g are differentiable functions and E(x) = x (E is an identity map), then the definition of E-type I functions{{Cite journal |last=Abdulaleem |first=Najeeb |date=2023 |title=Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions |url=https://www.aimsciences.org/article/doi/10.3934/jimo.2022004 |journal=Journal of Industrial and Management Optimization |volume=19 |issue=2 |pages=1513 |doi=10.3934/jimo.2022004 |issn=1547-5816|doi-access=free }} reduces to the definition of type I functions introduced by Rueda and Hanson.{{Cite journal |last=Rueda |first=Norma G |last2=Hanson |first2=Morgan A |date=1988-03-01 |title=Optimality criteria in mathematical programming involving generalized invexity |url=https://linkinghub.elsevier.com/retrieve/pii/0022247X88903137 |journal=Journal of Mathematical Analysis and Applications |volume=130 |issue=2 |pages=375–385 |doi=10.1016/0022-247X(88)90313-7 |issn=0022-247X}}

See also

References

Further reading

  • S. K. Mishra and G. Giorgi, Invexity and optimization, Nonconvex Optimization and Its Applications, Vol. 88, Springer-Verlag, Berlin, 2008.
  • S. K. Mishra, S.-Y. Wang and K. K. Lai, Generalized Convexity and Vector Optimization, Springer, New York, 2009.

{{Convex analysis and variational analysis}}

Category:Convex analysis

Category:Generalized convexity

Category:Real analysis

Category:Types of functions