Ion beam deposition
{{Use dmy dates|date=December 2017}}
Ion beam deposition (IBD) is a process of applying materials to a target through the application of an ion beam.{{Citation |last1=Ma |first1=W |title=16 - Diamond-like carbon (DLC) as a biocompatible coating in orthopaedic and cardiac medicine |date=2009-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9781845693589500168 |work=Cellular Response to Biomaterials |pages=391–426 |editor-last=Di Silvio |editor-first=Lucy |access-date=2023-12-10 |series=Woodhead Publishing Series in Biomaterials |publisher=Woodhead Publishing |isbn=978-1-84569-358-9 |last2=Ruys |first2=A J |last3=Zreiqat |first3=H}}
file:ion implanter schematic.svg
An ion beam deposition apparatus typically consists of an ion source, ion optics, and the deposition target. Optionally a mass analyzer can be incorporated.{{Citation |last1=Stout |first1=D. A. |title=5 - Synthesis of carbon based nanomaterials for tissue engineering applications |date=2013-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9780857095961500055 |work=Nanomaterials in Tissue Engineering |pages=119–157 |editor-last=Gaharwar |editor-first=A. K. |access-date=2023-12-10 |series=Woodhead Publishing Series in Biomaterials |publisher=Woodhead Publishing |isbn=978-0-85709-596-1 |last2=Durmus |first2=N. G. |last3=Webster |first3=T. J. |editor2-last=Sant |editor2-first=S. |editor3-last=Hancock |editor3-first=M. J. |editor4-last=Hacking |editor4-first=S. A.}}
In the ion source source materials in the form of a gas, an evaporated solid, or a solution (liquid) are ionized. For atomic IBD, electron ionization, field ionization (Penning ion source) or cathodic arc sources are employed.{{Citation needed|date=December 2023}} Cathodic arc sources are used particularly for carbon ion deposition. Molecular ion beam deposition employs electrospray ionization or MALDI sources.{{Citation |last1=Li |first1=Wuxia |title=Ion Beam Instruments Used for Nanomanufacturing |date=2013 |url=https://doi.org/10.1007/978-1-4471-4976-7_63-4 |work=Handbook of Manufacturing Engineering and Technology |pages=1–22 |editor-last=Nee |editor-first=Andrew |access-date=2023-12-10 |place=London |publisher=Springer |language=en |doi=10.1007/978-1-4471-4976-7_63-4 |isbn=978-1-4471-4976-7 |last2=Gu |first2=Changzhi|url-access=subscription }}
The ions are then accelerated, focused or deflected using high voltages or magnetic fields. Optional deceleration at the substrate can be employed to define the deposition energy. This energy usually ranges from a few eV up to a few keV. At low energy molecular ion beams are deposited intact (ion soft landing), while at a high deposition energy molecular ions fragment and atomic ions can penetrate further into the material, a process known as ion implantation.{{Cite book |last=Yurish |first=Sergey Y. |url=https://books.google.com/books?id=Wgp-DwAAQBAJ |title=Advances in Optics Reviews 1 |date=2018-10-17 |publisher= Lulu.com|isbn=978-0-244-42328-5 |language=en}}
Ion optics (such as radio frequency quadrupoles) can be mass selective. In IBD they are used to select a single, or a range of ion species for deposition in order to avoid contamination. For organic materials in particular, this process is often monitored by a mass spectrometer.{{Cite journal |last1=Walz |first1=Andreas |last2=Stoiber |first2=Karolina |last3=Huettig |first3=Annette |last4=Schlichting |first4=Hartmut |last5=Barth |first5=Johannes V. |date=2022-06-07 |title=Navigate Flying Molecular Elephants Safely to the Ground: Mass-Selective Soft Landing up to the Mega-Dalton Range by Electrospray Controlled Ion-Beam Deposition |journal=Analytical Chemistry |language=en |volume=94 |issue=22 |pages=7767–7778 |doi=10.1021/acs.analchem.1c04495 |issn=0003-2700 |pmc=9178560 |pmid=35609119}}
The ion beam current, which is quantitative measure for the deposited amount of material, can be monitored during the deposition process. Switching of the selected mass range can be used to define a stoichiometry.{{Cite journal |last1=Fremdling |first1=Paul |last2=Esser |first2=Tim K. |last3=Saha |first3=Bodhisattwa |last4=Makarov |first4=Alexander A. |last5=Fort |first5=Kyle L. |last6=Reinhardt-Szyba |first6=Maria |last7=Gault |first7=Joseph |last8=Rauschenbach |first8=Stephan |date=2022-09-27 |title=A Preparative Mass Spectrometer to Deposit Intact Large Native Protein Complexes |journal=ACS Nano |volume=16 |issue=9 |pages=14443–14455 |doi=10.1021/acsnano.2c04831 |issn=1936-0851 |pmc=9527803 |pmid=36037396}}
The main disadvantages of ion beam sputtering are its small target area, low deposition rate, and difficulty in depositing large-area films with uniform thickness.{{cite web |url=https://www.sputtertargets.net/advantages-and-disadvantages-of-ion-beam-sputtering |title=Advantages and Disadvantages of Ion Beam Sputtering |last=Green |first=Julissa |website=Sputter Targets |access-date=Aug 25, 2024}} Additionally, the equipment is complex and has high operating costs.{{cite journal |last=B. |first=Rauschenbach |year=2022 |title=Ion Beam Deposition and Cleaning. In: Low-Energy Ion Irradiation of Materials |journal=Springer Series in Materials Science |volume=324 |publisher=Springer, Cham |doi=10.1007/978-3-030-97277-6_9}} These limitations make ion beam sputtering less efficient for large-scale applications.{{cite journal |last1=Wang |first1=Haolin |last2=Zhang |first2=Xingwang |year=2015 |title=Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition |journal=Materials |volume=27 |issue=48 |pages=8109-8115 |doi=10.1002/adma.201504042}}