Iron-based superconductor

File:LnFePnOFstructure.png (La, Ce, Yb, Nd, Gd, Sm, etc.), Pn = pnictide (As, P, N, Bi, etc.){{Cite journal | doi = 10.1088/1468-6996/16/3/033503| pmid = 27877784| title = Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides| journal = Science and Technology of Advanced Materials| volume = 16| issue = 3| page = 033503| year = 2015| last1 = Hosono | first1 = H. | last2 = Tanabe | first2 = K. | last3 = Takayama-Muromachi | first3 = E. | last4 = Kageyama | first4 = H. | last5 = Yamanaka | first5 = S. | last6 = Kumakura | first6 = H. | last7 = Nohara | first7 = M. | last8 = Hiramatsu | first8 = H. | last9 = Fujitsu | first9 = S. |pmc=5099821|bibcode = 2015STAdM..16c3503H |arxiv = 1505.02240}}]]

Iron-based superconductors (FeSC) are iron-containing chemical compounds whose superconducting properties were discovered in 2006.{{cite journal|title = Iron-Based Layered Superconductor: LaOFeP |author1=Kamihara, Yoichi |author2=Hiramatsu, Hidenori |author3=Hirano, Masahiro |author4=Kawamura, Ryuto |author5=Yanagi, Hiroshi |author6=Kamiya, Toshio |author7=Hosono, Hideo |journal = J. Am. Chem. Soc.|volume = 128|issue = 31|pages = 10012–10013|year = 2006|doi = 10.1021/ja063355c|pmid = 16881620}}{{cite journal|author1=Kamihara, Yoichi |author2=Watanabe, Takumi |author3=Hirano, Masahiro |author4=Hosono, Hideo |journal=Journal of the American Chemical Society|volume=130|pages=3296–3297|year=2008|doi=10.1021/ja800073m|pmid=18293989|title = Iron-Based Layered Superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K|issue=11}} The first of such superconducting compounds belong to the group of oxypnictides, which was known since 1995.{{cite journal |author1=Zimmer, Barbara I. |author2=Jeitschko, Wolfgang |author3=Albering, Jörg H. |author4=Glaum, Robert |author5=Reehuis, Manfred |year=1995 |title=The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure |journal=Journal of Alloys and Compounds |volume=229 |issue=2 |pages=238–242 |doi=10.1016/0925-8388(95)01672-4}} Until 2006, however, they were in the first stages of experimentation and implementation{{cite journal |author1=Ozawa, T C |author2=Kauzlarich, S M |year=2008 |title=Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors |journal=Sci. Technol. Adv. Mater. |volume=9 |issue=3 |page=033003 |arxiv=0808.1158 |bibcode=2008STAdM...9c3003O |doi=10.1088/1468-6996/9/3/033003 |pmc=5099654 |pmid=27877997}} {{Open access}} and only the semiconductive properties of these compounds were known and patented.Hosono, H. et al. (2006) [http://www.freepatentsonline.com/EP1868215.html Magnetic semiconductor material] European Patent Application EP1868215 Previously most high-temperature superconductors were cuprates containing copper - oxygen layers. Much of the interest in iron-based superconductors is precisely because of the differences from the cuprates, which may help lead to a theory of non-BCS-theory superconductivity.[http://www.sciam.com/article.cfm?id=iron-exposed-as-high-temp-superconductor "Iron Exposed as High-Temperature Superconductor"]. Scientific American. June 2008

Iron-based superconductors of the group of oxypnictides were initially called ferropnictides. The crystal structure of these compounds displays conducting layers of iron and a pnictogen (typically arsenic (As) and phosphorus (P)) separated by a charge-reservoir block. It has also been found that some iron chalcogens and crystallogens superconduct.{{cite journal|doi=10.1103/Physics.1.28|title=The iron age of superconductivity|year=2008|last1=Johannes|first1=Michelle|author1-link=Michelle D. Johannes|journal=Physics|volume=1|page=28|bibcode = 2008PhyOJ...1...28J |url=https://physics.aps.org/featured-article-pdf/10.1103/PhysRevB.78.134514|doi-access=free}}

{{cite journal

|last1=Bernardini |first1=F.

|last2=Garbarino |first2=G.

|last3=Sulpice |first3=A.

|last4=Núñnez-Regueiro |first4=M.

|last5=Gaudin |first5=E.

|last6=Chevalier |first6=B.

|last7=Measson |first7=M.-A.

|last8=Cano |first8=A.

|last9=Tencé |first9=S.

|display-authors=1

|year=2018

|title=Iron-based superconductivity extended to the novel silicide LaFeSiH

|journal=Physical Review B

|volume=97 |issue=10 |page=100504

|doi=10.1103/PhysRevB.97.100504

|arxiv=1701.05010

|bibcode=2018PhRvB..97j0504B

}}

{{blockquote|The crystalline material, known chemically as LaOFeAs, stacks iron and arsenic layers, where the electrons flow, between planes of lanthanum and oxygen. Replacing up to 11 percent of the oxygen with fluorine improved the compound – it became superconductive at 26 kelvin, the team reports in the March 19, 2008 Journal of the American Chemical Society. Subsequent research from other groups suggests that replacing the lanthanum in LaOFeAs with other rare earth elements such as cerium, samarium, neodymium and praseodymium leads to superconductors that work at 52 kelvin.}}

Iron-based superconductors are classified according to their crystal structure and chemical formula into the following main families,

  • 1111-type, with representative compounds LaFePO, LaFeAsO, SmFeAsO, PrFeAsO,{{cite journal |author=Ren, Zhi-An |last2=Che |first2=Guang-Can |last3=Dong |first3=Xiao-Li |last4=Yang |first4=Jie |last5=Lu |first5=Wei |last6=Yi |first6=Wei |last7=Shen |first7=Xiao-Li |last8=Li |first8=Zheng-Cai |last9=Sun |first9=Li-Ling |last10=Zhou |first10=Fang |last11=Zhao |first11=Zhong-Xian |year=2008 |title=Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping |journal=EPL |volume=83 |issue=1 |page=17002 |arxiv=0804.2582 |bibcode=2008EL.....8317002R |doi=10.1209/0295-5075/83/17002 |s2cid=96240327}} and LaFeSiH.
  • 111-type such as LiFeAs, NaFeAs,{{cite journal |last1=Zhang |first1=S. J. |last2=Wang |first2=X. C. |last3=Liu |first3=Q. Q. |last4=Lv |first4=Y. X. |last5=Yu |first5=X. H. |last6=Lin |first6=Z. J. |last7=Zhao |first7=Y. S. |last8=Wang |first8=L. |last9=Ding |first9=Y. |last10=Mao |first10=H. K. |last11=Jin |first11=C. Q. |year=2009 |title=Superconductivity at 31 K in the "111"-type iron arsenide superconductor Na1−xFeAs induced by pressure |journal=EPL |volume=88 |issue=4 |page=47008 |arxiv=0912.2025 |bibcode=2009EL.....8847008Z |doi=10.1209/0295-5075/88/47008 |s2cid=55588819}} and LiFeP.{{cite journal |last1=Deng |first1=Z. |last2=Wang |first2=X. C. |last3=Liu |first3=Q. Q. |last4=Zhang |first4=S. J. |last5=Lv |first5=Y. X. |last6=Zhu |first6=J. L. |last7=Yu |first7=R. C. |last8=Jin |first8=C. Q. |year=2009 |title=A new "111" type iron pnictide superconductor LiFeP |journal=EPL |volume=87 |issue=3 |page=37004 |arxiv=0908.4043 |bibcode=2009EL.....8737004D |doi=10.1209/0295-5075/87/37004 |s2cid=119227185}}
  • 11-type FeSe
  • 122-type such as BaFe2As2, SrFe2As2{{cite journal |last1=Sasmal |first1=K. |last2=Lv |first2=Bing |last3=Lorenz |first3=Bernd |last4=Guloy |first4=Arnold M. |last5=Chen |first5=Feng |last6=Xue |first6=Yu-Yi |last7=Chu |first7=Ching-Wu |year=2008 |title=Superconducting Fe-Based Compounds (A1−xSrx) Fe2As2 with A=K and Cs with Transition Temperatures up to 37 K |url=http://repository.ust.hk/ir/bitstream/1783.1-18311/1/PhysRevLett.101.107007.pdf |journal=Physical Review Letters |volume=101 |issue=10 |page=107007 |arxiv=0806.1301 |bibcode=2008PhRvL.101j7007S |doi=10.1103/physrevlett.101.107007 |pmid=18851250 |s2cid=2425512}} and CaFe2As2

Superconductivity is obtained either in the parent phases of some of these systems (e.g. LaFePO, LaFeSiH, and LiFeAs) or by means of doping or applied pressure.{{cite journal |author=Day, C. |year=2009 |title=Iron-based superconductors |journal=Physics Today |volume=62 |issue=8 |pages=36–40 |bibcode=2009PhT....62h..36D |doi=10.1063/1.3206093 |doi-access=free}}{{cite journal |author=Stewart, G. R. |year=2011 |title=Superconductivity in iron compounds |journal=Rev. Mod. Phys. |volume=83 |issue=4 |pages=1589–1652 |arxiv=1106.1618 |bibcode=2011RvMP...83.1589S |doi=10.1103/revmodphys.83.1589 |s2cid=119238477}}

Undoped β-FeSe is the simplest iron-based superconductor but with distinct properties.{{Cite journal|author1=Yu. V. Pustovit |author2=A. A. Kordyuk |year=2016 |title=Metamorphoses of electronic structure of FeSe-based superconductors (Review article) |journal=Low Temp. Phys. |volume=42 |issue=11 |arxiv=1608.07751|bibcode=2016LTP....42..995P |doi=10.1063/1.4969896 |pages=995–1007 |s2cid=119184569 }} It has a critical temperature (Tc) of 8 K at normal pressure, and 36.7 K under high pressure{{cite journal|doi=10.1038/nmat2491|pmid=19525948|title=Electronic and Magnetic Phase Diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure|year=2009|last1=Medvedev|first1=S.|last2=McQueen|first2=T. M.|last3=Troyan|first3=I. A.|last4=Palasyuk|first4=T.|last5=Eremets|author5-link=Mikhail Eremets|first5=M. I.|last6=Cava|first6=R. J.|last7=Naghavi|first7=S.|last8=Casper|first8=F.|last9=Ksenofontov|first9=V.|last10=Wortmann|first10=G.|last11=Felser|first11=C.|journal=Nature Materials|volume=8|issue=8|pages=630–633|arxiv = 0903.2143 |bibcode = 2009NatMa...8..630M |s2cid=117714394 }} and by means of intercalation. The combination of both intercalation and higher pressure results in re-emerging superconductivity at Tc of up to 48 K (see,{{Cite journal|author1=Sun, Liling |author2=Chen, Xiao-Jia |author3= Guo, Jing |author4= Gao, Peiwen |author5= Huang, Qing-Zhen |author6= Wang, Hangdong |author7= Fang, Minghu |author8= Chen, Xiaolong |author9= Chen, Genfu |author10= Wu, Qi |author11= Zhang, Chao |author12= Gu, Dachun |author13= Dong, Xiaoli |author14= Wang, Lin |author15= Yang, Ke |author16= Li, Aiguo |author17= Dai, Xi |author18= Mao, Ho-kwang |author19=Zhao, Zhongxian |year=2012 |title= Re-emerging superconductivity at 48 kelvin in iron chalcogenides |journal= Nature |volume= 483 | number = 7387|pages = 67–69|doi= 10.1038/nature10813 |pmid=22367543 |arxiv= 1110.2600 |bibcode=2012Natur.483...67S }} and references therein).

Compared with other families, the synthesis of the 122 compounds is relatively easy which facilitates the investigation of these systems.

class="wikitable sortable"

!Oxypnictide

!Tc (K)

LaO0.89F0.11FeAs

| 26{{cite journal|last1=Ishida|first1=Kenji|last2=Nakai|first2=Yusuke|last3=Hosono|first3=Hideo|title=To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report|journal=Journal of the Physical Society of Japan|volume=78|issue=6|year=2009|page=062001|doi=10.1143/JPSJ.78.062001|arxiv = 0906.2045 |bibcode=2009JPSJ...78f2001I|s2cid=119295430}}

LaO0.9F0.2FeAs

| 28.5{{cite journal|doi = 10.1209/0295-5075/84/57003|title = Potassium fluoride doped LaOFeAs multi-band superconductor: Evidence of extremely high upper critical field|year = 2008|author = Prakash, J.|journal = EPL|volume = 84|page = 57003|first2 = S. J.|first3 = S. L.|first4 = S.|first5 = A. K.|last2 = Singh|last3 = Samal|last4 = Patnaik|last5 = Ganguli|bibcode = 2008EL.....8457003P|issue = 5 |s2cid = 119254951}}

CeFeAsO0.84F0.16

| 41

SmFeAsO0.9F0.1

| 43{{cite journal|doi = 10.1038/nature07045|pmid = 18500328|title = Superconductivity at 43 K in SmFeAsO1–xFx|year = 2008|author1=Chen, X. H. |author2=Wu, T. |author3=Wu, G. |author4=Liu, R. H. |author5=Chen, H. |author6=Fang, D. F. |journal = Nature|volume = 453|issue = 7196|pages = 761–762|bibcode = 2008Natur.453..761C|arxiv=0803.3603|s2cid = 115842939}}

La0.5Y0.5FeAsO0.6

| 43.1{{cite journal|bibcode = 2008PhRvB..78q2503S|doi = 10.1103/PhysRevB.78.172503|title = Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1−xYxFeAsOy|year = 2008|author = Shirage, Parasharam M.|journal = Physical Review B|volume = 78|page = 172503|first2 = Kiichi|first3 = Hijiri|first4 = Hiroshi|first5 = Akira|last2 = Miyazawa|last3 = Kito|last4 = Eisaki|last5 = Iyo|issue = 17}}

NdFeAsO0.89F0.11

| 52

PrFeAsO0.89F0.11

| 52{{cite journal|doi = 10.1179/143307508X333686|title = Superconductivity at 52 K in iron based F doped layered quaternary compound Pr[O1−xFx]FeAs|year = 2008|author = Ren, Z. A.|journal = Materials Research Innovations|volume = 12|pages = 105–106|first2 = J.|first3 = W.|first4 = W.|first5 = G. C.|first6 = X. L.|first7 = L. L.|first8 = Z. X.|last2 = Yang|last3 = Lu|last4 = Yi|last5 = Che|last6 = Dong|last7 = Sun|last8 = Zhao|issue = 3|arxiv = 0803.4283| bibcode=2008MatRI..12..105R |s2cid = 55488705}}

ErFeAsO1−y

| 45{{cite journal | doi=10.1209/0295-5075/92/57011 | title=Synthesis of ErFeAsO-based superconductors by the hydrogen doping method | year=2010 | last1=Shirage | first1=Parasharam M. | last2=Miyazawa | first2=Kiichi | last3=Kihou | first3=Kunihiro | last4=Lee | first4=Chul-Ho | last5=Kito | first5=Hijiri | last6=Tokiwa | first6=Kazuyasu | last7=Tanaka | first7=Yasumoto | last8=Eisaki | first8=Hiroshi | last9=Iyo | first9=Akira | journal=EPL | volume=92 | issue=5 | page=57011 | arxiv = 1011.5022 | bibcode = 2010EL.....9257011S| s2cid=118303767 }}

Al-32522 (CaAlOFeAs)

| 30(As), 16.6 (P){{cite journal|doi=10.1021/ja110729m|title=Emergence of Superconductivity in "32522" Structure of (Ca3Al2O5−y)(Fe2Pn2) (Pn = As and P)|year=2011|last1=Shirage|first1=Parasharam M.|last2=Kihou|first2=Kunihiro|last3=Lee|first3=Chul-Ho|last4=Kito|first4=Hijiri|last5=Eisaki|first5=Hiroshi|last6=Iyo|first6=Akira|journal=Journal of the American Chemical Society|volume=133|issue=25|pages=9630–3|pmid=21627302}}

Al-42622 (CaAlOFeAs)

| 28.3(As), 17.2 (P){{cite journal|doi=10.1063/1.3508957|title=Superconductivity at 28.3 and 17.1 K in (Ca4Al2O6−y)(Fe2Pn2) (Pn=As and P)|year=2010|last1=Shirage|first1=Parasharam M.|last2=Kihou|first2=Kunihiro|last3=Lee|first3=Chul-Ho|last4=Kito|first4=Hijiri|last5=Eisaki|first5=Hiroshi|last6=Iyo|first6=Akira|journal=Applied Physics Letters|volume=97|issue=17|page=172506|arxiv = 1008.2586 |bibcode = 2010ApPhL..97q2506S |s2cid = 117899145}}

GdFeAsO0.85

| 53.5{{cite journal|doi = 10.1088/0953-2048/21/8/082001|title = Superconductivity at 53.5 K in GdFeAsO1−δ|year = 2008|author = Yang, Jie|journal = Superconductor Science and Technology|volume = 21|page = 082001|first2 = Zheng-Cai|first3 = Wei|first4 = Wei|first5 = Xiao-Li|first6 = Zhi-An|first7 = Guang-Can|first8 = Xiao-Li|first9 = Li-Ling|last10 = Zhou|first10 = Fang|last11 = Zhao|first11 = Zhong-Xian|last2 = Li|last3 = Lu|last4 = Yi|last5 = Shen|last6 = Ren|last7 = Che|last8 = Dong|last9 = Sun|bibcode = 2008SuScT..21h2001Y|issue = 8|arxiv = 0804.3727| s2cid=121990600 }}

BaFe1.8Co0.2As2

| 25.3{{cite journal|doi=10.1103/PhysRevLett.102.097002|arxiv=0810.1048|title=Scanning Tunneling Spectroscopy and Vortex Imaging in the Iron Pnictide Superconductor BaFe1.8Co0.2As2|year=2009|last1=Yin|first1=Yi|last2=Zech|first2=M.|last3=Williams|first3=T. L.|last4=Wang|first4=X. F.|last5=Wu|first5=G.|last6=Chen|first6=X. H.|last7=Hoffman|first7=J. E.|journal=Physical Review Letters|volume=102|issue=9|page=97002|pmid=19392555|bibcode = 2009PhRvL.102i7002Y |s2cid=16583932}}

SmFeAsO~0.85

|

class="wikitable"

!Non-oxypnictide

!Tc (K)

Ba0.6K0.4Fe2As2

| 38{{cite journal|title = Superconductivity at 38 K in the Iron Arsenide (Ba1−xKx)Fe2As2|author1=Rotter, Marianne |author2=Tegel, Marcus |author3=Johrendt, Dirk |journal = Physical Review Letters |volume = 101 |page = 107006|year = 2008|doi = 10.1103/PhysRevLett.101.107006|pmid = 18851249|issue = 10|bibcode=2008PhRvL.101j7006R|arxiv = 0805.4630 |s2cid=25876149 }}

Ca0.6Na0.4Fe2As2

| 26{{cite journal|doi=10.1143/APEX.1.081702|title=Superconductivity at 26 K in (Ca1−xNax)Fe2As2|year=2008|last1=Shirage|first1=Parasharam Maruti|first2=Kiichi|first3=Hijiri|first4=Hiroshi|first5=Akira|journal=Applied Physics Express|volume=1|page=081702|last2=Miyazawa|last3=Kito|last4=Eisaki|last5=Iyo|issue=8 |bibcode=2008APExp...1h1702M|s2cid=94498268 }}

CaFe0.9Co0.1AsF

| 22{{cite journal|title = Superconductivity Induced by Co-Doping in Quaternary Fluoroarsenide CaFeAsF|author1=Satoru Matsuishi |author2=Yasunori Inoue |author3=Takatoshi Nomura |author4=Hiroshi Yanagi |author5=Masahiro Hirano |author6=Hideo Hosono |journal = J. Am. Chem. Soc.|volume = 130|pages = 14428–14429|year = 2008|doi = 10.1021/ja806357j|pmid = 18842039|issue = 44}}

Sr0.5Sm0.5FeAsF

| 56{{cite journal|last1=Wu|first1=G|last2=Xie|first2=Y L|last3=Chen|first3=H|last4=Zhong|first4=M|last5=Liu|first5=R H|last6=Shi|first6=B C|last7=Li|first7=Q J|last8=Wang|first8=X F|last9=Wu|first9=T|last10=Yan|first10=Y J|last11=Ying|first11=J J|last12=Chen|first12=X H|title=Superconductivity at 56 K in samarium-doped SrFeAsF|journal=Journal of Physics: Condensed Matter|volume=21|issue=14|year=2009|page=142203|doi=10.1088/0953-8984/21/14/142203|arxiv=0811.0761|bibcode=2009JPCM...21n2203W|pmid=21825317|s2cid=41728130}}

LiFeAs

| 18{{cite journal|last1=Wang|first1=X.C.|last2=Liu|first2=Q.Q.|last3=Lv|first3=Y.X.|last4=Gao|first4=W.B.|last5=Yang|first5=L.X.|last6=Yu|first6=R.C.|last7=Li|first7=F.Y.|last8=Jin|first8=C.Q.|title=The superconductivity at 18 K in LiFeAs system|journal=Solid State Communications|volume=148|issue=11–12|year=2008|pages=538–540|arxiv = 0806.4688|doi=10.1016/j.ssc.2008.09.057|bibcode=2008SSCom.148..538W|s2cid=55247836}}{{cite journal|last1=Pitcher|first1=Michael J.|last2=Parker|first2=Dinah R.|last3=Adamson|first3=Paul|last4=Herkelrath|first4=Sebastian J. C.|last5=Boothroyd|first5=Andrew T.|last6=Ibberson|first6=Richard M.|last7=Brunelli|first7=Michela|last8=Clarke|first8=Simon J.|title=Structure and superconductivity of LiFeAs|journal=Chemical Communications|issue=45|year=2008|pages=5918–20|pmid = 19030538|doi=10.1039/b813153h|arxiv=0807.2228|s2cid=3258249}}{{cite journal|last1=Tapp|first1=Joshua H.|last2=Tang|first2=Zhongjia|last3=Lv|first3=Bing|last4=Sasmal|first4=Kalyan|last5=Lorenz|first5=Bernd|last6=Chu|first6=Paul C. W.|last7=Guloy|first7=Arnold M.|title=LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K|journal=Physical Review B|volume=78|issue=6|year=2008|page=060505|arxiv = 0807.2274|doi=10.1103/PhysRevB.78.060505|bibcode=2008PhRvB..78f0505T|s2cid=118379012}}

NaFeAs

| 9–25{{cite journal|last1=Chu|first1=C.W.|last2=Chen|first2=F.|last3=Gooch|first3=M.|last4=Guloy|first4=A.M.|last5=Lorenz|first5=B.|last6=Lv|first6=B.|last7=Sasmal|first7=K.|last8=Tang|first8=Z.J.|last9=Tapp|first9=J.H.|last10=Xue|first10=Y.Y.|title=The synthesis and characterization of LiFeAs and NaFeAs|journal=Physica C: Superconductivity|volume=469|issue=9–12|year=2009|pages=326–331|arxiv = 0902.0806|doi=10.1016/j.physc.2009.03.016|bibcode=2009PhyC..469..326C|s2cid=118531206}}{{cite journal|title = Structure and superconductivity of the layered iron arsenide NaFeAs|author1=Parker, Dinah R. |author2=Pitcher, Michael J. |author3=Clarke, Simon J. |year = 2008|doi = 10.1039/B818911K|journal = Chemical Communications|issue = 16|pages = 2189–91|volume = 2189|arxiv = 0810.3214 |pmid=19360189|s2cid=45189652 }}

FeSe

| <27{{cite journal|title = Superconductivity in the PbO-type structure α-FeSe|author = Fong-Chi Hsu|journal = PNAS|volume = 105|pages = 14262–14264|year = 2008|doi = 10.1073/pnas.0807325105|pmid = 18776050|issue = 38|pmc = 2531064|bibcode=2008PNAS..10514262H|name-list-style=vanc|display-authors = 1|last2 = Luo|first2 = J.-Y.|last3 = Yeh|first3 = K.-W.|last4 = Chen|first4 = T.-K.|last5 = Huang|first5 = T.-W.|last6 = Wu|first6 = P. M.|last7 = Lee|first7 = Y.-C.|last8 = Huang|first8 = Y.-L.|last9 = Chu|first9 = Y.-Y.|last10 = Yan|first10 = Der-Chung|last11 = Wu|first11 = Maw-Kuen|doi-access = free}}{{cite journal|title = Superconductivity at 27 K in tetragonal FeSe under high pressure|author1=Mizuguchi, Yoshikazu |author2=Tomioka, Fumiaki |author3=Tsuda, Shunsuke |author4=Yamaguchi, Takahide |author5=Takano, Yoshihiko |journal = Appl. Phys. Lett.|volume = 93|page = 152505|year = 2008|doi = 10.1063/1.3000616|bibcode = 2008ApPhL..93o2505M|issue = 15 |arxiv = 0807.4315 |s2cid=119218961 }}

LaFeSiH

|11{{cite journal|last1=Bernardini|first1=F.|first2=G. |last2=Garbarino |first3=A. |last3=Sulpice |first4=M. |last4=Núñez-Regueiro |first5=E. |last5=Gaudin |first6=B. |last6=Chevalier |first7=M.-A. |last7=Méasson |first8=A. |last8=Cano |first9=S. |last9=Tencé|display-authors=1

|title=Iron-based superconductivity extended to the novel silicide LaFeSiH |journal=Physical Review B|volume=97|issue=10|date=2018|page=100504|arxiv = 1701.05010|doi=10.1103/PhysRevB.97.100504|bibcode=2018PhRvB..97j0504B |s2cid=119004395|issn=2469-9969}}

Compounds such as Sr2ScFePO3 discovered in 2009 are referred to as the '42622' family, as FePSr2ScO3.{{cite journal | doi=10.1088/0953-2048/23/2/022001 | title=Evidence for nodal superconductivity in Sr2ScFePO3 | year=2010 | last1=Yates | first1=K A | last2=Usman | first2=I T M | last3=Morrison | first3=K | last4=Moore | first4=J D | last5=Gilbertson | first5=A M | last6=Caplin | first6=A D | last7=Cohen | first7=L F | last8=Ogino | first8=H | last9=Shimoyama | first9=J | journal=Superconductor Science and Technology | volume=23 | issue=2 | page=022001 | arxiv = 0908.2902 | bibcode = 2010SuScT..23b2001Y| s2cid=119248392 }} Noteworthy is the synthesis of (Ca4Al2O6−y)(Fe2Pn2) (or Al-42622(Pn); Pn = As and P) using high-pressure synthesis technique. Al-42622(Pn) exhibit superconductivity for both Pn = As and P with the transition temperatures of 28.3 K and 17.1 K, respectively. The a-lattice parameters of Al-42622(Pn) (a = 3.713 Å and 3.692 Å for Pn = As and P, respectively) are smallest among the iron-pnictide superconductors. Correspondingly, Al-42622(As) has the smallest As–Fe–As bond angle (102.1°) and the largest As distance from the Fe planes (1.5 Å). High-pressure technique also yields (Ca3Al2O5−y)(Fe2Pn2) (Pn = As and P), the first reported iron-based superconductors with the perovskite-based '32522' structure. The transition temperature (Tc) is 30.2 K for Pn = As and 16.6 K for Pn = P. The emergence of superconductivity is ascribed to the small tetragonal a-axis lattice constant of these materials. From these results, an empirical relationship was established between the a-axis lattice constant and Tc in iron-based superconductors.

In 2009, it was shown that undoped iron pnictides had a magnetic quantum critical point deriving from competition between electronic localization and itinerancy.{{Cite journal|last1=Dai|first1=Jianhui|last2=Si|first2=Qimiao|last3=Zhu|first3=Jian-Xin|last4=Abrahams|first4=Elihu|date=2009-03-17|title=Iron pnictides as a new setting for quantum criticality|journal=Proceedings of the National Academy of Sciences|language=en|volume=106|issue=11|pages=4118–4121|doi=10.1073/pnas.0900886106|issn=0027-8424|pmc=2657431|pmid=19273850|arxiv=0808.0305|bibcode=2009PNAS..106.4118D|doi-access=free}}

File:Phase diagram of the 122 family of ferro-pnictides.png

Properties

{{Main|High-temperature superconductivity}}

Similarly to superconducting cuprates, the properties of iron based superconductors change dramatically with doping. Parent compounds of FeSC are usually metals (unlike the cuprates) but, similarly to cuprates, are ordered antiferromagnetically that often termed as a spin-density wave (SDW). Some parent compounds superconduct. Otherwise, superconductivity emerges upon either hole or electron doping. In general, the phase diagram is similar to the cuprates.File:Fephasediag.png (AF/SDW) phase close to zero doping and the superconducting phase around optimal doping. The Ln-1111 phase diagrams for La

{{cite journal

|year=2009

|title=Electronic phase diagram of the LaO1−xFxFeAs superconductor

|journal=Nature Materials

|volume=8|issue=4|doi=10.1038/nmat2397

|pmid=19234445

|bibcode=2009NatMa...8..305L

|pages=305–9

|arxiv=0806.3533 |last1=Luetkens

|first1=H

|last2=Klauss

|first2=H. H.

|last3=Kraken

|first3=M

|last4=Litterst

|first4=F. J.

|last5=Dellmann

|first5=T

|last6=Klingeler

|first6=R

|last7=Hess

|first7=C

|last8=Khasanov

|first8=R

|last9=Amato

|first9=A

|last10=Baines

|first10=C

|last11=Kosmala

|first11=M

|last12=Schumann

|first12=O. J.

|last13=Braden

|first13=M

|last14=Hamann-Borrero

|first14=J

|last15=Leps

|first15=N

|last16=Kondrat

|first16=A

|last17=Behr

|first17=G

|last18=Werner

|first18=J

|last19=Büchner

|first19=B

|s2cid=14660470

}} and Sm

{{cite journal

|year=2009

|title=Coexistence of static magnetism and superconductivity in SmFeAsO1−xFx as revealed by muon spin rotation

|journal=Nature Materials

|volume=8 |issue=4 |pages=310–314

|doi=10.1038/nmat2396

|pmid=19234446

|bibcode=2009NatMa...8..310D

|arxiv=0807.4876 |last1=Drew

|first1=A. J.

|last2=Niedermayer

|first2=Ch

|last3=Baker

|first3=P. J.

|last4=Pratt

|first4=F. L.

|last5=Blundell

|first5=S. J.

|last6=Lancaster

|first6=T

|last7=Liu

|first7=R. H.

|last8=Wu

|first8=G

|last9=Chen

|first9=X. H.

|last10=Watanabe

|first10=I

|last11=Malik

|first11=V. K.

|last12=Dubroka

|first12=A

|last13=Rössle

|first13=M

|last14=Kim

|first14=K. W.

|last15=Baines

|first15=C

|last16=Bernhard

|first16=C

|citeseerx=10.1.1.634.8055

|s2cid=205402602

}}

{{cite journal|doi=10.1103/PhysRevB.80.052503

|year=2009

|title=Competition between magnetism and superconductivity at the phase boundary of doped SmFeAsO pnictides

|journal=Physical Review B

|volume=80

|issue=5

|page=052503

|arxiv=0902.2156

|last1=Sanna

|first1=S.

|last2=De Renzi

|first2=R.

|last3=Lamura

|first3=G.

|last4=Ferdeghini

|first4=C.

|last5=Palenzona

|first5=A.

|last6=Putti

|first6=M.

|last7=Tropeano

|first7=M.

|last8=Shiroka

|first8=T.

|bibcode=2009PhRvB..80e2503S

|s2cid=119247319

}} were determined using muon spin spectroscopy, the phase diagram for Ce

{{cite journal

|year=2008

|title=Structural and magnetic phase diagram of CeFeAsO1−xFx and its relation to high-temperature superconductivity

|journal=Nature Materials

|volume=7 |issue=12 |pages=953–959

|doi=10.1038/nmat2315

|pmid=18953342

|bibcode=2008NatMa...7..953Z

|arxiv=0806.2528 |last1=Zhao

|first1=J

|last2=Huang

|first2=Q

|last3=de la Cruz

|first3=C

|last4=Li

|first4=S

|last5=Lynn

|first5=J. W.

|last6=Chen

|first6=Y

|last7=Green

|first7=M. A.

|last8=Chen

|first8=G. F.

|last9=Li

|first9=G

|last10=Li

|first10=Z

|last11=Luo

|first11=J. L.

|last12=Wang

|first12=N. L.

|last13=Dai

|first13=P

|s2cid=25937023

}} was determined using neutron diffraction. The Ba-122 phase diagram is based on.

{{cite journal

|year=2009

|doi=10.1103/PhysRevB.79.014506

|title=Determination of the phase diagram of the electron doped superconductor Ba(Fe1−xCox)2As2

|journal=Physical Review B

|volume=79

|issue=1

|page=014506

|bibcode=2009PhRvB..79a4506C

|last1=Chu

|first1=Jiun-Haw

|last2=Analytis

|first2=James

|last3=Kucharczyk

|first3=Chris

|last4=Fisher

|first4=Ian

|arxiv=0811.2463 |s2cid=10731115

}}]]

Superconducting transition temperatures are listed in the tables (some at high pressure). BaFe1.8Co0.2As2 is predicted to have an upper critical field of 43 tesla from the measured coherence length of 2.8 nm.

In 2011, Japanese scientists made a discovery which increased a metal compound's superconductivity by immersing iron-based compounds in hot alcoholic beverages such as red wine.{{cite web|title=Press release: Japanese scientists use alcoholic drinks to induce superconductivity|url=http://www.iop.org/news/11/march/page_50051.html|publisher=Institute of Physics|date=7 March 2011}}{{cite journal|last1=Deguchi|first1=K|last2=Mizuguchi|first2=Y|last3=Kawasaki|first3=Y|last4=Ozaki|first4=T|last5=Tsuda|first5=S|last6=Yamaguchi|first6=T|last7=Takano|first7=Y|title=Alcoholic beverages induce superconductivity in FeTe1−xSx|journal=Superconductor Science and Technology|volume=24|issue=5|year=2011|page=055008|arxiv=1008.0666|doi=10.1088/0953-2048/24/5/055008|bibcode=2011SuScT..24e5008D|s2cid=93508333}} Earlier reports indicated that excess Fe is the cause of the bicollinear antiferromagnetic order and is not in favor of superconductivity. Further investigation revealed that weak acid has the ability to deintercalate the excess Fe from the interlayer sites. Therefore, weak acid annealing suppresses the antiferromagnetic correlation by deintercalating the excess Fe and, hence superconductivity is achieved.{{cite news|title=Red Wine, Tartaric Acid, and the Secret of Superconductivity|url=https://www.technologyreview.com/s/427302/red-wine-tartaric-acid-and-the-secret-of-superconductivity/|work=MIT Technology Review|date=March 22, 2012|language=en}}{{cite journal|last1=Deguchi|first1=K|last2=Sato|first2=D|last3=Sugimoto|first3=M|last4=Hara|first4=H|last5=Kawasaki|first5=Y|last6=Demura|first6=S|last7=Watanabe|first7=T|last8=Denholme|first8=S J|last9=Okazaki|first9=H|last10=Ozaki|first10=T|last11=Yamaguchi|first11=T|last12=Takeya|first12=H|last13=Soga|first13=T|last14=Tomita|first14=M|last15=Takano|first15=Y|title=Clarification as to why alcoholic beverages have the ability to induce superconductivity in Fe1+dTe1−xSx|journal=Superconductor Science and Technology|volume=25|issue=8|year=2012|page=084025|arxiv=1204.0190|doi=10.1088/0953-2048/25/8/084025|bibcode=2012SuScT..25h4025D|s2cid=119223257}}

There is an empirical correlation of the transition temperature with electronic band structure: the Tc maximum is observed when some of the Fermi surface stays in proximity to Lifshitz topological transition. Similar correlation has been later reported for high-Tc cuprates that indicates possible similarity of the superconductivity mechanisms in these two families of high temperature superconductors.{{Cite journal|author=A. A. Kordyuk |year=2018 |title=Electronic band structure of optimal superconductors: from cuprates to ferropnictides and back again (Review Article) |journal=Low Temp. Phys. |volume=44 |issue=6 |arxiv=1803.01487|bibcode= 2018LTP....44..477K|doi=10.1063/1.5037550 |pages=477–486|s2cid=119342977 }}

=Thin films=

The critical temperature is increased further in thin-films of iron chalcogenides on suitable substrates. In 2015, a Tc of around 105–111 K was observed in thin films of iron selenide grown on strontium titanate.{{cite journal|last1=Ge|first1=JF|last2=Liu|first2=ZL|last3=Liu|first3=C|last4=Gao|first4=CL|last5=Qian|first5=D|last6=Xue|first6=DK|last7=Liu|first7=Y|last8=Jia|first8=JF|title=Superconductivity above 100K in single-layer FeSe films on doped SrTiO3|journal=Nat. Mater.|volume=14|pages=285–9|year=2014|issue=3 |doi=10.1038/NMAT4153|pmid=25419814 |arxiv=1406.3435 |s2cid=119227626 }}

See also

References

{{Reflist|30em}}

{{Superconductivity}}

Category:Superconductors

Category:Iron compounds