Isbell duality

{{Short description|Duality is an adjunction between a category of co/presheaf under the co/Yoneda embedding.}}

{{CS1 config|mode=cs2}}

In mathematics, Isbell conjugacy (a.k.a. Isbell duality or Isbell adjunction) (named after John R. Isbell{{R|Baez2022}}{{harv|Di Liberti

|2020|loc=2. Isbell duality}}) is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986.{{harv|Lawvere|1986|page=169}}{{harv|Rutten|1998}} That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding.{{harv|Melliès|Zeilberger|2018}}{{harv|Willerton|2013}} In addition, Lawvere{{harv|Lawvere|1986|page=169}} is states as follows; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".{{harv|Space and quantity in nlab}}

Definition

= Yoneda embedding =

The (covariant) Yoneda embedding is a covariant functor from a small category \mathcal{A} into the category of presheaves \left[\mathcal{A}^{op}, \mathcal{V} \right] on \mathcal{A}, taking X \in \mathcal{A} to the contravariant representable functor: {{R|Baez2022}}{{harv|Yoneda embedding in nlab}}

{{harv|Valence|2017|loc=Corollaire 2}}{{harv|Awodey|2006|loc= Definition 8.1.}}

Y \; (h^{\bullet}) :\mathcal{A} \rightarrow \left[\mathcal{A}^{op}, \mathcal{V} \right]

X \mapsto \mathrm{hom} (-,X).

and the co-Yoneda embedding{{R|Baez2022}}{{R|nlab1}}{{R|nlab2}}{{harv|Valence|2017|loc=Définition 67}} (a.k.a. contravariant Yoneda embedding{{harv|Di Liberti |Loregian|2019|loc=Definition 5.12}}{{refn|group=note|Note that: the contravariant Yoneda embedding written in the article is replaced with the opposite category for both domain and codomain from that written in the textbook.{{harv|Riehl|2016|loc=Theorem 3.4.11.}}{{harv|Leinster|2004|loc=(c) and (c').}} See variance of functor, pre/post-composition,{{harv|Riehl|2016|loc=Definition 1.3.11.}} and opposite functor.{{harv|Starr|2020|loc=Example 4.7.}}{{harv|Opposite functors in nlab}} It follows from Yoneda lemma that \left[\mathcal{A}, \mathcal{V} \right]^{op} \left(Y, \mathcal{A}(X,-) \right) \simeq Y(X). In addition, this pair of Yoneda embeddings is collectively called the two Yoneda embeddings.{{harv|Pratt|1996|loc=§.4 Symmetrizing the Yoneda embedding}}}} or the dual Yoneda embedding{{harv|Day|Lack|2007|loc=§9. Isbell conjugacy}}) is a contravariant functor from a small category \mathcal{A} into the opposite of the category of co-presheaves \left[\mathcal{A}, \mathcal{V} \right]^{op} on \mathcal{A}, taking X \in \mathcal{A} to the covariant representable functor:

Z \; ({h_{\bullet}}^{op}): \mathcal{A} \rightarrow \left[\mathcal{A}, \mathcal{V} \right]^{op}

X \mapsto \mathrm{hom} (X,-).

= Isbell duality =

File:Isbell duality.svg

[[File:Nerve and realization (ver. left kan extension).svg|thumb|note:In order for this commutative diagram to hold, it is required that \mathcal{A} is small and E is co-complete.{{harv|Di Liberti

|2020|loc=Remark 2.3 (The (co)nerve construction).}}{{harv|Kelly|1982|loc=Proposition 4.33 }}{{harv|Riehl|2016|loc=Remark 6.5.9.}}{{harv|Imamura|2022|loc=Theorem 2.4 }}]]

Every functor F \colon \mathcal{A}^\mathrm{op}\to \mathcal{V} has an Isbell conjugate of a functor{{R|Baez2022}} F^{\ast} \colon \mathcal{A} \to \mathcal{V}, given by

F^{\ast} (X) = \mathrm{hom} (F , y(X)).

In contrast, every functor G \colon \mathcal{A} \to \mathcal{V} has an Isbell conjugate of a functor{{R|Baez2022}} G^{\ast} \colon \mathcal{A}^\mathrm{op} \to \mathcal{V} given by

G^{\ast} (X) = \mathrm{hom} (z(X) , G).

These two functors are not typically inverses, or even natural isomorphisms. Isbell duality asserts that the relationship between these two functors is an adjunction.{{R|Baez2022}}

Isbell duality is the relationship between Yoneda embedding and co-Yoneda embedding;

Let \mathcal{V} be a symmetric monoidal closed category, and let \mathcal{A} be a small category enriched in \mathcal{V}.

The Isbell duality is an adjunction between the functor categories; \left(\mathcal{O} \dashv \mathrm{Spec} \right) \colon \left[\mathcal{A}^{op}, \mathcal{V} \right] {\underset{\mathrm{Spec}}{\overset{\mathcal{O}}{\rightleftarrows}}}

\left[\mathcal{A}, \mathcal{V} \right]^{op}.{{harv|Baez

|2022}}{{R|Lawvere1986}}{{harv|Isbell duality in nlab}}{{harv|Di Liberti

|2020|loc=Remark 2.4}}{{harv|Fosco

|2021}}{{harv|Valence|2017|loc=Définition 68}}

The functors \mathcal{O} \dashv \mathrm{Spec} of Isbell duality are such that \mathcal{O} \cong \mathrm{Lan_{Y}Z} and \mathrm{Spec} \cong \mathrm{Lan_{Z}Y}.{{R|DiLiberti2020}}{{harv|Di Liberti |Loregian|2019|loc=Lemma 5.13.}}For the symbol Lan, see left Kan extension.

See also

References

{{reflist}}

Bibliography

  • {{citation

|url=http://www.tac.mta.ca/tac/volumes/36/12/36-12.pdf

|arxiv=2102.08290

|last1=Avery |first1=Tom

|last2=Leinster |first2=Tom

|title=Isbell conjugacy and the reflexive completion

|journal=Theory and Applications of Categories

|date=2021

|volume=36

|pages=306–347 }}

  • {{citation

|doi=10.1093/acprof:oso/9780198568612.001.0001

|title=Category Theory

|date=2006

|last1=Awodey |first1=Steve

|isbn=978-0-19-856861-2 }}

  • {{citation

|doi=10.1090/noti2602

|arxiv=2212.11079

|last1=Baez |first1=John C.

|title=Isbell Duality

|journal=Notices Amer. Math. Soc.

|date=2022

|volume=70

|pages=140–141

|url=https://www.ams.org/journals/notices/202301/noti2602/noti2602.html?adat=January%202023&trk=2602&galt=none&cat=column&pdfissue=202301&pdffile=rnoti-p140.pdf }}

  • {{citation

| last1 = Day | first1 = Brian J.

| last2 = Lack | first2 = Stephen

| doi = 10.1016/j.jpaa.2006.10.019

| issue = 3

| journal = Journal of Pure and Applied Algebra

| mr = 2324597

| pages = 651–663

| title = Limits of small functors

| volume = 210

| year = 2007| arxiv = math/0610439

| s2cid = 15424936

}}.

  • {{citation

|doi=10.1016/j.jpaa.2020.106379

|title=Codensity: Isbell duality, pro-objects, compactness and accessibility

|date=2020

|last1=Di Liberti |first1=Ivan

|journal=Journal of Pure and Applied Algebra

|volume=224

|issue=10

|arxiv=1910.01014

|s2cid=203626566 }}

  • {{citation

|url={{Google books|cfIuEAAAQBAJ&dq|page=90|plainurl=yes}}

| isbn=9781108746120

| date=22 July 2021

| publisher=Cambridge University Press

| first1=Loregian|last1=Fosco| title=(Co)end Calculus

| doi=10.1017/9781108778657

|

arxiv=1501.02503 | s2cid=237839003

}}

  • {{citation

|doi=10.1007/s10485-011-9274-z

|title=Approaching Metric Domains

|date=2013

|last1=Gutierres |first1=Gonçalo

|last2=Hofmann |first2=Dirk

|journal=Applied Categorical Structures

|volume=21

|issue=6

|pages=617–650

|arxiv=1103.4744 |s2cid=254225188

}}

  • {{citation

|url=http://www.tac.mta.ca/tac/volumes/28/20/28-20.pdf

|arxiv=1307.5625

|last1=Shen |first1=Lili

|last2=Zhang |first2=Dexue

|title=Categories enriched over a quantaloid: Isbell adjunctions and Kan adjunctions

|journal=Theory and Applications of Categories

|volume=28|issue= 20

|pages= 577–615

|date=2013 }}

  • {{citation

|doi=10.1215/ijm/1255456274

|title=Adequate subcategories

|date=1960

|last1=Isbell |first1=J. R.

|journal=Illinois Journal of Mathematics

|volume=4

|issue=4 |doi-access=free

}}

  • {{citation

|doi=10.1090/S0002-9904-1966-11541-0

|title=Structure of categories

|date=1966

|last1=Isbell |first1=John R.

|journal=Bulletin of the American Mathematical Society

|volume=72

|issue=4

|pages=619–656

|s2cid=40822693 |doi-access=free

}}

  • {{citation

|doi=10.1007/s10485-022-09681-1

|title=Grothendieck Enriched Categories

|date=2022

|last1=Imamura |first1=Yuki

|journal=Applied Categorical Structures

|volume=30

|issue=5

|pages=1017–1041

|arxiv=2105.05108 }}

  • {{citation

| last = Kelly | first = Gregory Maxwell

| isbn = 0-521-28702-2

| mr = 651714

| publisher = Cambridge University Press, Cambridge-New York

| series = London Mathematical Society Lecture Note Series

| title = Basic concepts of enriched category theory

| volume = 64

| year = 1982

|url=http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf}}

  • {{citation

| last = Lawvere | first = F. W. | authorlink = William Lawvere

| issue = 3–4

| journal = Revista Colombiana de Matemáticas

| mr = 948965

| pages = 147–178

| title = Taking categories seriously

| url = http://eudml.org/doc/181771

| volume = 20

| year = 1986}}

  • {{citation

| last = Lawvere | first = F. W. | authorlink = William Lawvere

| journal = Reprints in Theory and Applications of Categories

| mr = 948965

| pages = 1–24

| title = Taking categories seriously

| url = http://www.tac.mta.ca/tac/reprints/articles/8/tr8.pdf

| issue = 8

| year = 2005}}

  • {{citation |url=https://cgasa.sbu.ac.ir/article_12425_1874.html

|title=Birkhoff's Theorem from a geometric perspective: A simple example

|journal=Categories and General Algebraic Structures with Applications

|date=February 2016

|volume=4

|issue=1

|pages=1–8

|last1=Lawvere |first1=F. William }}

  • {{citation

|doi=10.1017/S0960129517000068

|arxiv=1501.05115

|title=An Isbell duality theorem for type refinement systems

|date=2018

|last1=Melliès |first1=Paul-André

|last2=Zeilberger |first2=Noam

|journal=Mathematical Structures in Computer Science

|volume=28

|issue=6

|pages=736–774

|s2cid=2716529 }}

  • {{citation

|doi=10.1016/S1571-0661(05)80415-3

|title=Broadening the denotational semantics of linear logic

|date=1996

|last1=Pratt

|first1=Vaughan

|journal=Electronic Notes in Theoretical Computer Science

|volume=3

|pages=155–166 |doi-access=free

}}

  • {{citation

|isbn=9780486809038

|url=https://math.jhu.edu/~eriehl/context/

|title=Category Theory in Context

|last1=Riehl

|first1=Emily

|year=2016

|publisher=Dover Publications, Inc Mineola, New York}}

  • {{citation

|doi=10.1016/S0166-8641(97)00224-1

|title=Weighted colimits and formal balls in generalized metric spaces

|date=1998

|last1=Rutten |first1=J.J.M.M.

|journal=Topology and Its Applications

|volume=89

|issue=1–2

|pages=179–202 |doi-access=free

}}

  • {{citation |doi=10.1016/j.aim.2018.10.007 | doi-access=free

|title=The factorization of the Giry monad

|date=2018

|last1=Sturtz |first1=Kirk

|journal=Advances in Mathematics

|volume=340

|pages=76–105 |arxiv=1707.00488}}

  • {{cite arXiv |eprint=1907.00372

|last1=Sturtz |first1=K.

|title=Erratum and Addendum: The factorization of the Giry monad

|date=2019

|class=math.CT }}

  • {{citation |doi=10.1016/0021-8693(82)90055-2 | doi-access=free

|title=Some remarks on total categories

|date=1982

|last1=Wood |first1=R.J

|journal=Journal of Algebra

|volume=75

|issue=2

|pages=538–545 }}

  • {{citation |arxiv=1302.4370

|last1=Willerton |first1=Simon

|title=Tight spans, Isbell completions and semi-tropical modules

|date=2013

|journal=Theory and Applications of Categories

|volume=28

|issue=22

|pages=696–732

|url=http://www.tac.mta.ca/tac/volumes/28/22/28-22.pdf }}

Footnote

{{Reflist|group=note}}