Isbell duality
{{Short description|Duality is an adjunction between a category of co/presheaf under the co/Yoneda embedding.}}
{{CS1 config|mode=cs2}}
In mathematics, Isbell conjugacy (a.k.a. Isbell duality or Isbell adjunction) (named after John R. Isbell{{R|Baez2022}}{{harv|Di Liberti
|2020|loc=2. Isbell duality}}) is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986.{{harv|Lawvere|1986|page=169}}{{harv|Rutten|1998}} That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding.{{harv|Melliès|Zeilberger|2018}}{{harv|Willerton|2013}} In addition, Lawvere{{harv|Lawvere|1986|page=169}} is states as follows; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".{{harv|Space and quantity in nlab}}
Definition
= Yoneda embedding =
The (covariant) Yoneda embedding is a covariant functor from a small category into the category of presheaves on , taking to the contravariant representable functor: {{R|Baez2022}}{{harv|Yoneda embedding in nlab}}
{{harv|Valence|2017|loc=Corollaire 2}}{{harv|Awodey|2006|loc= Definition 8.1.}}
and the co-Yoneda embedding{{R|Baez2022}}{{R|nlab1}}{{R|nlab2}}{{harv|Valence|2017|loc=Définition 67}} (a.k.a. contravariant Yoneda embedding{{harv|Di Liberti |Loregian|2019|loc=Definition 5.12}}{{refn|group=note|Note that: the contravariant Yoneda embedding written in the article is replaced with the opposite category for both domain and codomain from that written in the textbook.{{harv|Riehl|2016|loc=Theorem 3.4.11.}}{{harv|Leinster|2004|loc=(c) and (c').}} See variance of functor, pre/post-composition,{{harv|Riehl|2016|loc=Definition 1.3.11.}} and opposite functor.{{harv|Starr|2020|loc=Example 4.7.}}{{harv|Opposite functors in nlab}} It follows from Yoneda lemma that . In addition, this pair of Yoneda embeddings is collectively called the two Yoneda embeddings.{{harv|Pratt|1996|loc=§.4 Symmetrizing the Yoneda embedding}}}} or the dual Yoneda embedding{{harv|Day|Lack|2007|loc=§9. Isbell conjugacy}}) is a contravariant functor from a small category into the opposite of the category of co-presheaves on , taking to the covariant representable functor:
= Isbell duality =
[[File:Nerve and realization (ver. left kan extension).svg|thumb|note:In order for this commutative diagram to hold, it is required that is small and E is co-complete.{{harv|Di Liberti
|2020|loc=Remark 2.3 (The (co)nerve construction).}}{{harv|Kelly|1982|loc=Proposition 4.33 }}{{harv|Riehl|2016|loc=Remark 6.5.9.}}{{harv|Imamura|2022|loc=Theorem 2.4 }}]]
Every functor has an Isbell conjugate of a functor{{R|Baez2022}} , given by
In contrast, every functor has an Isbell conjugate of a functor{{R|Baez2022}} given by
These two functors are not typically inverses, or even natural isomorphisms. Isbell duality asserts that the relationship between these two functors is an adjunction.{{R|Baez2022}}
Isbell duality is the relationship between Yoneda embedding and co-Yoneda embedding;
Let be a symmetric monoidal closed category, and let be a small category enriched in .
The Isbell duality is an adjunction between the functor categories;
\left[\mathcal{A}, \mathcal{V} \right]^{op}.{{harv|Baez
|2022}}{{R|Lawvere1986}}{{harv|Isbell duality in nlab}}{{harv|Di Liberti
|2020|loc=Remark 2.4}}{{harv|Fosco
|2021}}{{harv|Valence|2017|loc=Définition 68}}
The functors of Isbell duality are such that and .{{R|DiLiberti2020}}{{harv|Di Liberti |Loregian|2019|loc=Lemma 5.13.}}For the symbol Lan, see left Kan extension.
See also
References
{{reflist}}
Bibliography
- {{citation
|url=http://www.tac.mta.ca/tac/volumes/36/12/36-12.pdf
|arxiv=2102.08290
|last1=Avery |first1=Tom
|last2=Leinster |first2=Tom
|title=Isbell conjugacy and the reflexive completion
|journal=Theory and Applications of Categories
|date=2021
|volume=36
|pages=306–347 }}
- {{citation
|doi=10.1093/acprof:oso/9780198568612.001.0001
|title=Category Theory
|date=2006
|last1=Awodey |first1=Steve
|isbn=978-0-19-856861-2 }}
- {{citation
|doi=10.1090/noti2602
|arxiv=2212.11079
|last1=Baez |first1=John C.
|title=Isbell Duality
|journal=Notices Amer. Math. Soc.
|date=2022
|volume=70
|pages=140–141
|url=https://www.ams.org/journals/notices/202301/noti2602/noti2602.html?adat=January%202023&trk=2602&galt=none&cat=column&pdfissue=202301&pdffile=rnoti-p140.pdf }}
- {{citation
| last1 = Day | first1 = Brian J.
| last2 = Lack | first2 = Stephen
| doi = 10.1016/j.jpaa.2006.10.019
| issue = 3
| journal = Journal of Pure and Applied Algebra
| mr = 2324597
| pages = 651–663
| title = Limits of small functors
| volume = 210
| year = 2007| arxiv = math/0610439
| s2cid = 15424936
}}.
- {{citation
|doi=10.1016/j.jpaa.2020.106379
|title=Codensity: Isbell duality, pro-objects, compactness and accessibility
|date=2020
|last1=Di Liberti |first1=Ivan
|journal=Journal of Pure and Applied Algebra
|volume=224
|issue=10
|arxiv=1910.01014
|s2cid=203626566 }}
- {{citation
|url={{Google books|cfIuEAAAQBAJ&dq|page=90|plainurl=yes}}
| isbn=9781108746120
| date=22 July 2021
| publisher=Cambridge University Press
| first1=Loregian|last1=Fosco| title=(Co)end Calculus
| doi=10.1017/9781108778657
|
arxiv=1501.02503 | s2cid=237839003
}}
- {{citation
|doi=10.1007/s10485-011-9274-z
|title=Approaching Metric Domains
|date=2013
|last1=Gutierres |first1=Gonçalo
|last2=Hofmann |first2=Dirk
|journal=Applied Categorical Structures
|volume=21
|issue=6
|pages=617–650
|arxiv=1103.4744 |s2cid=254225188
}}
- {{citation
|url=http://www.tac.mta.ca/tac/volumes/28/20/28-20.pdf
|arxiv=1307.5625
|last1=Shen |first1=Lili
|last2=Zhang |first2=Dexue
|title=Categories enriched over a quantaloid: Isbell adjunctions and Kan adjunctions
|journal=Theory and Applications of Categories
|volume=28|issue= 20
|pages= 577–615
|date=2013 }}
- {{citation
|doi=10.1215/ijm/1255456274
|title=Adequate subcategories
|date=1960
|last1=Isbell |first1=J. R.
|journal=Illinois Journal of Mathematics
|volume=4
|issue=4 |doi-access=free
}}
- {{citation
|doi=10.1090/S0002-9904-1966-11541-0
|title=Structure of categories
|date=1966
|last1=Isbell |first1=John R.
|journal=Bulletin of the American Mathematical Society
|volume=72
|issue=4
|pages=619–656
|s2cid=40822693 |doi-access=free
}}
- {{citation
|doi=10.1007/s10485-022-09681-1
|title=Grothendieck Enriched Categories
|date=2022
|last1=Imamura |first1=Yuki
|journal=Applied Categorical Structures
|volume=30
|issue=5
|pages=1017–1041
|arxiv=2105.05108 }}
- {{citation
| last = Kelly | first = Gregory Maxwell
| isbn = 0-521-28702-2
| mr = 651714
| publisher = Cambridge University Press, Cambridge-New York
| series = London Mathematical Society Lecture Note Series
| title = Basic concepts of enriched category theory
| volume = 64
| year = 1982
|url=http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf}}
- {{citation
| last = Lawvere | first = F. W. | authorlink = William Lawvere
| issue = 3–4
| journal = Revista Colombiana de Matemáticas
| mr = 948965
| pages = 147–178
| title = Taking categories seriously
| url = http://eudml.org/doc/181771
| volume = 20
| year = 1986}}
- {{citation
| last = Lawvere | first = F. W. | authorlink = William Lawvere
| journal = Reprints in Theory and Applications of Categories
| mr = 948965
| pages = 1–24
| title = Taking categories seriously
| url = http://www.tac.mta.ca/tac/reprints/articles/8/tr8.pdf
| issue = 8
| year = 2005}}
- {{citation |url=https://cgasa.sbu.ac.ir/article_12425_1874.html
|title=Birkhoff's Theorem from a geometric perspective: A simple example
|journal=Categories and General Algebraic Structures with Applications
|date=February 2016
|volume=4
|issue=1
|pages=1–8
|last1=Lawvere |first1=F. William }}
- {{citation
|doi=10.1017/S0960129517000068
|arxiv=1501.05115
|title=An Isbell duality theorem for type refinement systems
|date=2018
|last1=Melliès |first1=Paul-André
|last2=Zeilberger |first2=Noam
|journal=Mathematical Structures in Computer Science
|volume=28
|issue=6
|pages=736–774
|s2cid=2716529 }}
- {{citation
|doi=10.1016/S1571-0661(05)80415-3
|title=Broadening the denotational semantics of linear logic
|date=1996
|last1=Pratt
|first1=Vaughan
|journal=Electronic Notes in Theoretical Computer Science
|volume=3
|pages=155–166 |doi-access=free
}}
- {{citation
|isbn=9780486809038
|url=https://math.jhu.edu/~eriehl/context/
|title=Category Theory in Context
|last1=Riehl
|first1=Emily
|year=2016
|publisher=Dover Publications, Inc Mineola, New York}}
- {{citation
|doi=10.1016/S0166-8641(97)00224-1
|title=Weighted colimits and formal balls in generalized metric spaces
|date=1998
|last1=Rutten |first1=J.J.M.M.
|journal=Topology and Its Applications
|volume=89
|issue=1–2
|pages=179–202 |doi-access=free
}}
- {{citation |doi=10.1016/j.aim.2018.10.007 | doi-access=free
|title=The factorization of the Giry monad
|date=2018
|last1=Sturtz |first1=Kirk
|journal=Advances in Mathematics
|volume=340
|pages=76–105 |arxiv=1707.00488}}
- {{cite arXiv |eprint=1907.00372
|last1=Sturtz |first1=K.
|title=Erratum and Addendum: The factorization of the Giry monad
|date=2019
|class=math.CT }}
- {{citation |doi=10.1016/0021-8693(82)90055-2 | doi-access=free
|title=Some remarks on total categories
|date=1982
|last1=Wood |first1=R.J
|journal=Journal of Algebra
|volume=75
|issue=2
|pages=538–545 }}
- {{citation |arxiv=1302.4370
|last1=Willerton |first1=Simon
|title=Tight spans, Isbell completions and semi-tropical modules
|date=2013
|journal=Theory and Applications of Categories
|volume=28
|issue=22
|pages=696–732
|url=http://www.tac.mta.ca/tac/volumes/28/22/28-22.pdf }}
Footnote
{{Reflist|group=note}}
External links
- {{cite arXiv |eprint=1901.01594 |last1=Di Liberti |first1=Ivan |last2=Loregian |first2=Fosco |title=On the unicity of formal category theories |date=2019 |class=math.CT }}
- {{citation |last1=Leinster |first1=Tom |title= An ABC of Category Theory ch.4 Representability|url=https://www.maths.ed.ac.uk/~tl/ct/four.pdf |website=maths.ed.ac.uk |date=2004}}
- {{citation |last1=Loregian |first1=Fosco |title=Kan extensions |url=https://tetrapharmakon.github.io/stuff/REFCARDS_kan.pdf |website=tetrapharmakon.github.io |date=2018}}
- {{citation |last1=Starr |first1=Jason |title= Some Notes on Category Theory in MAT 589 Algebraic Geometry |url=https://www.math.stonybrook.edu/~jstarr/M589s20/M589s20cats.pdf |website=math.stonybrook.edu |date=2020}}
- {{citation |title=Esquisse d'une dualité géométrico-algébrique multidisciplinaire : la dualité d'Isbell, Thèse en cotutelle en Philosophie – Étude des Systèmes, soutenue le 30 mai 2017. |date=2017 |last1=Valence |first1=Arnaud |url=https://scd-resnum.univ-lyon3.fr/out/theses/2017_out_valence_a.pdf}}
- {{citation |title=Isbell duality |url=https://ncatlab.org/nlab/show/Isbell+duality |website=ncatlab.org|ref={{harvid|Isbell duality in nlab}}}}
- {{citation |title=space and quantity|url=https://ncatlab.org/nlab/show/space+and+quantity##Isbell |website=ncatlab.org|ref={{harvid|Space and quantity in nlab}}}}
- {{citation |title=Yoneda embedding |url=https://ncatlab.org/nlab/show/Yoneda+embedding |website=ncatlab.org|ref={{harvid|Yoneda embedding in nlab}}}}
- {{citation |title=co-Yoneda lemma |url=https://ncatlab.org/nlab/show/co-Yoneda+lemma |website=ncatlab.org}}
- {{citation |title=copresheaf |url=https://ncatlab.org/nlab/show/copresheaf |website=ncatlab.org|ref={{harvid|copresheaf in nlab}}}}
- {{citation |title=Natural transformations and presheaves: Remark 1.28. (presheaves as generalized spaces) |url=https://ncatlab.org/nlab/show/geometry+of+physics+–+basic+notions+of+category+theory#NaturalTransformationsAndPresheaves |website=ncatlab.org}}
- {{citation |title=Opposite functors |url=https://ncatlab.org/nlab/show/opposite+category#opposite_functors |website=ncatlab.org|ref={{harvid|Opposite functors in nlab}}}}
{{DEFAULTSORT:Isbell duality}}
{{categorytheory-stub}}