Isotopes of argon#Argon-40

{{Short description|none}}

{{Infobox argon isotopes}}

{{Use dmy dates |date=July 2020}}

Argon ({{sub|18}}Ar) has 26 known isotopes, from {{sup|29}}Ar to {{sup|54}}Ar, of which three are stable ({{sup|36}}Ar, {{sup|38}}Ar, and {{sup|40}}Ar). On Earth, {{sup|40}}Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are {{sup|39}}Ar with a half-life of 268 years, {{sup|42}}Ar with a half-life of 32.9 years, and {{sup|37}}Ar with a half-life of 35.04 days. All other isotopes have half-lives of less than two hours, and most less than one minute.

The naturally occurring Potassium-40, with a half-life of 1.248{{x10^|9}} years, decays to stable {{sup|40}}Ar by electron capture (10.72%) and by positron emission (0.001%), and also to stable {{sup|40}}Ca via beta decay (89.28%). These properties and ratios are used to determine the age of rocks through potassium–argon dating.

{{cite web

|title=40Ar/39Ar dating and errors

|url=http://www.geoberg.de/text/geology/07011601.php

|access-date=2007-03-07

|url-status=dead

|archive-url=https://web.archive.org/web/20070509023017/http://www.geoberg.de/text/geology/07011601.php

|archive-date=2007-05-09

}}

Despite the trapping of {{sup|40}}Ar in many rocks, it can be released by melting, grinding, and diffusion. Almost all argon in the Earth's atmosphere is the product of {{sup|40}}K decay, since 99.6% of Earth's atmospheric argon is {{sup|40}}Ar, whereas in the Sun and presumably in primordial star-forming clouds, argon consists of < 15% {{sup|38}}Ar and mostly (85%) {{sup|36}}Ar. Similarly, the ratio of the isotopes {{sup|36}}Ar:{{sup|38}}Ar:{{sup|40}}Ar in the atmospheres of the outer planets is measured to be 8400:1600:1.{{cite journal |last1=Cameron |first1=A.G.W. |author-link1=Alastair G. W. Cameron |title=Elemental and isotopic abundances of the volatile elements in the outer planets |journal=Space Science Reviews |date=1973 |volume=14 |issue=3–4 |pages=392–400 |bibcode=1973SSRv...14..392C |doi=10.1007/BF00214750 |s2cid=119861943}}

In the Earth's atmosphere, radioactive {{sup|39}}Ar (half-life 268(8) years) is made by cosmic ray activity, primarily from {{sup|40}}Ar. In the subsurface environment, it is also produced through neutron capture by {{sup|39}}>K or alpha emission by calcium. The content of {{sup|39}}Ar in natural argon is measured to be of (8.0±0.6)×10{{sup|−16}} g/g, or (1.01±0.08) Bq/kg of {{sup|36, 38, 40}}Ar.

{{cite journal

|author=P. Benetti

|title=Measurement of the specific activity of 39Ar in natural argon

|year=2007

|journal=Nuclear Instruments and Methods A

|volume=574 |issue=1

|pages=83–88

|arxiv=astro-ph/0603131 |bibcode=2007NIMPA.574...83B |display-authors=etal

|doi=10.1016/j.nima.2007.01.106

|s2cid=17073444

}} The content of 42Ar (half-life 33 years) in the Earth's atmosphere is lower than 6×10−21 parts per part of 36, 38, 40Ar.

{{cite journal

|author=V. D. Ashitkov

|title=New experimental limit on the 42Ar content in the Earth's atmosphere

|year=1998

|journal=Nuclear Instruments and Methods A

|volume=416 |issue=1

|pages=179–181

|display-authors=etal |bibcode=1998NIMPA.416..179A

|doi=10.1016/S0168-9002(98)00740-2

}} Many endeavors require argon depleted in the cosmogenic isotopes, known as depleted argon.

{{cite journal

|author=H. O. Back |year=2012

|title=Depleted Argon from Underground Sources

|journal=Physics Procedia

|volume=37 |pages=1105–1112

|display-authors=etal |bibcode=2012PhPro..37.1105B

|doi=10.1016/j.phpro.2012.04.099 |doi-access=free}} Lighter radioactive isotopes can decay to different elements (usually chlorine) while heavier ones decay to potassium.

36Ar, in the form of argon hydride, was detected in the Crab Nebula supernova remnant during 2013.{{cite news |last=Quenqua |first=Douglas |title=Noble Molecules Found in Space |date=13 December 2013 |work=The New York Times |url=https://www.nytimes.com/2013/12/17/science/space/noble-molecules-found-in-space.html |access-date=13 December 2013}}

{{cite journal

|last=Barlow |first=M. J.

|year=2013

|title=Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula

|journal=Science

|volume=342 |issue=6164 |pages=1343–1345

|display-authors=etal |arxiv=1312.4843

|bibcode=2013Sci...342.1343B |pmid=24337290

|doi=10.1126/science.1243582

|s2cid=37578581

}} This was the first time a noble molecule was detected in outer space.

37Ar is a synthetic radionuclide that is created via neutron capture of 40Ca followed by alpha particle emission, as a result of subsurface nuclear explosions. It has a half-life of 35 days.

List of isotopes

{{Anchor|Argon-32m}}

{{Isotopes table

|symbol=Ar

|refs=NUBASE2020, AME2020 II

|notes=m, unc(), mass#, spin(), spin#, daughter-st, n, p, EC,

}}

|-id=Argon-29

| 29Ar{{cite journal |last=Mukha |first=I. |display-authors=et al. |title=Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains |date=2018 |journal=Physical Review C |volume=98 |issue=6 |pages=064308–1–064308–13 |arxiv=1803.10951 |bibcode=2018PhRvC..98f4308M |doi=10.1103/PhysRevC.98.064308 |s2cid=119384311}}

| style="text-align:right" | 18

| style="text-align:right" | 11

| 29.04076(47)#

|

| 2p

| 27S

| 5/2+#

|

|

|-id=Argon-30

| 30Ar

| style="text-align:right" | 18

| style="text-align:right" | 12

| 30.02369(19)#

| <10 ps

| 2p

| 28S

| 0+

|

|

|-id=Argon-31

| rowspan=7|31Ar

| rowspan=7 style="text-align:right" | 18

| rowspan=7 style="text-align:right" | 13

| rowspan=7|31.01216(22)#

| rowspan=7|15.0(3) ms

| β+, p (68.3%)

| 30S

| rowspan=7|5/2+

| rowspan=7|

| rowspan=7|

|-

| β+ (22.63%)

| 31Cl

|-

| β+, 2p (9.0%)

| 29P

|-

| β+, 3p (0.07%)

| 28Si

|-

| β+, p, α? (<0.38%)

| 26Si

|-

| β+, α? (<0.03%)

| 27P

|-

| 2p? (<0.03%)

| 29S

|-id=Argon-32

| rowspan=2|32Ar

| rowspan=2 style="text-align:right" | 18

| rowspan=2 style="text-align:right" | 14

| rowspan=2|31.9976378(19)

| rowspan=2|98(2) ms

| β+ (64.42%)

| 32Cl

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β+, p (35.58%)

| 31S

|-id=Argon-33

| rowspan=2|33Ar

| rowspan=2 style="text-align:right" | 18

| rowspan=2 style="text-align:right" | 15

| rowspan=2|32.98992555(43)

| rowspan=2|173.0(20) ms

| β+ (61.3%)

| 33Cl

| rowspan=2|1/2+

| rowspan=2|

| rowspan=2|

|-

| β+, p (38.7%)

| 32S

|-id=Argon-34

| 34Ar

| style="text-align:right" | 18

| style="text-align:right" | 16

| 33.980270092(83)

| 846.46(35) ms

| β+

| 34Cl

| 0+

|

|

|-id=Argon-35

| 35Ar

| style="text-align:right" | 18

| style="text-align:right" | 17

| 34.97525772(73)

| 1.7756(10) s

| β+

| 35Cl

| 3/2+

|

|

|-id=Argon-36

| 36Ar

| style="text-align:right" | 18

| style="text-align:right" | 18

| 35.967545106(28)

| colspan=3 align=center|Observationally StableBelieved to undergo double electron capture to 36S (lightest theoretically unstable nuclide for which no evidence of radioactivity has been observed)

| 0+

| 0.003336(210)

|

|-id=Argon-37

| 37Ar

| style="text-align:right" | 18

| style="text-align:right" | 19

| 36.96677630(22)

| 35.011(19) d

| EC

| 37Cl

| 3/2+

| Trace

|

|-id=Argon-38

| 38Ar

| style="text-align:right" | 18

| style="text-align:right" | 20

| 37.96273210(21)

| colspan=3 align=center|Stable

| 0+

| 0.000629(70)

|

|-id=Argon-39

| 39ArUsed in argon–argon dating

| style="text-align:right" | 18

| style="text-align:right" | 21

| 38.9643130(54)

| {{val|268.2|3.1|2.9}} y{{cite journal |last=Golovko |first=Victor V. |title=Application of the most frequent value method for 39Ar half-life determination |journal=The European Physical Journal C |volume=83 |issue=10 |date=2023-10-15 |page=930 |issn=1434-6052 |arxiv=2310.06867 |bibcode=2023EPJC...83..930G |doi=10.1140/epjc/s10052-023-12113-6}}

| β

| 39K

| 7/2−

| {{val|8e-16}}{{cite journal |last1=Lu |first1=Zheng-Tian |title=What trapped atoms reveal about global groundwater |journal=Physics Today |date=1 March 2013 |volume=66 |issue=3 |pages=74–75 |bibcode=2013PhT....66c..74L |doi=10.1063/PT.3.1926}}Cosmogenic nuclide

|

|-id=Argon-40

| 40ArUsed in argon–argon dating and potassium–argon dating

| style="text-align:right" | 18

| style="text-align:right" | 22

| 39.9623831220(23)

| colspan=3 align=center|Stable

| 0+

| 0.996035(250)Generated from 40K in rocks. These ratios are terrestrial. Cosmic abundance is far less than 36Ar.

|

|-id=Argon-41

| 41Ar

| style="text-align:right" | 18

| style="text-align:right" | 23

| 40.96450057(37)

| 109.61(4) min

| β

| 41K

| 7/2−

| Trace

|

|-id=Argon-42

| 42Ar

| style="text-align:right" | 18

| style="text-align:right" | 24

| 41.9630457(62)

| 32.9(11) y

| β

| 42K

| 0+

|

|

|-id=Argon-43

| 43Ar

| style="text-align:right" | 18

| style="text-align:right" | 25

| 42.9656361(57)

| 5.37(6) min

| β

| 43K

| 5/2(−)

|

|

|-id=Argon-44

| 44Ar

| style="text-align:right" | 18

| style="text-align:right" | 26

| 43.9649238(17)

| 11.87(5) min

| β

| 44K

| 0+

|

|

|-id=Argon-45

| 45Ar

| style="text-align:right" | 18

| style="text-align:right" | 27

| 44.96803973(55)

| 21.48(15) s

| β

| 45K

| (5/2−,7/2−)

|

|

|-id=Argon-46

| 46Ar

| style="text-align:right" | 18

| style="text-align:right" | 28

| 45.9680392(25)

| 8.4(6) s

| β

| 46K

| 0+

|

|

|-id=Argon-47

| rowspan=2|47Ar

| rowspan=2 style="text-align:right" | 18

| rowspan=2 style="text-align:right" | 29

| rowspan=2|46.9727671(13)

| rowspan=2|1.23(3) s

| β (>99.8%)

| 47K

| rowspan=2|(3/2)−

| rowspan=2|

| rowspan=2|

|-

| β, n? (<0.2%)

| 46K

|-id=Argon-48

| rowspan=2|48Ar

| rowspan=2 style="text-align:right" | 18

| rowspan=2 style="text-align:right" | 30

| rowspan=2|47.976001(18)

| rowspan=2|415(15) ms

| β (62%)

| 48K

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β, n (38%)

| 47K

|-id=Argon-49

| rowspan=3|49Ar

| rowspan=3 style="text-align:right" | 18

| rowspan=3 style="text-align:right" | 31

| rowspan=3|48.98169(43)#

| rowspan=3|236(8) ms

| β

| 49K

| rowspan=3|3/2−#

| rowspan=3|

| rowspan=3|

|-

| β, n (29%)

| 48K

|-

| β, 2n?

| 47K

|-id=Argon-50

| rowspan=3|50Ar

| rowspan=3 style="text-align:right" | 18

| rowspan=3 style="text-align:right" | 32

| rowspan=3|49.98580(54)#

| rowspan=3|106(6) ms

| β (63%)

| 50K

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| β, n (37%)

| 49K

|-

| β, 2n?

| 48K

|-id=Argon-51

| rowspan=3|51Ar

| rowspan=3 style="text-align:right" | 18

| rowspan=3 style="text-align:right" | 33

| rowspan=3|50.99303(43)#

| rowspan=3|30# ms
[>200 ns]

| β?

| 51K

| rowspan=3|1/2−#

| rowspan=3|

| rowspan=3|

|-

| β, n?

| 50K

|-

| β, 2n?

| 49K

|-id=Argon-52

| rowspan=3|52Ar

| rowspan=3 style="text-align:right" | 18

| rowspan=3 style="text-align:right" | 34

| rowspan=3|51.99852(64)#

| rowspan=3|40# ms
[>620 ns]

| β?

| 52K

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| β, n?

| 51K

|-

| β, 2n?

| 50K

|-id=Argon-53

| rowspan=3|53Ar

| rowspan=3 style="text-align:right" | 18

| rowspan=3 style="text-align:right" | 35

| rowspan=3|53.00729(75)#

| rowspan=3|20# ms
[>620 ns]

| β?

| 53K

| rowspan=3|5/2−#

| rowspan=3|

| rowspan=3|

|-

| β, n?

| 52K

|-

| β, 2n?

| 51K

|-id=Argon-54

| rowspan=3|54Ar

| rowspan=3 style="text-align:right" | 18

| rowspan=3 style="text-align:right" | 36

| rowspan=3|54.01348(86)#

| rowspan=3|5# ms
[>400 ns]

| β?

| 54K

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| β, n?

| 53K

|-

| β, 2n?

| 52K

{{Isotopes table/footer}}

References

{{Reflist}}