Isotopes of boron#Boron-11

{{Short description|none}}

{{more citations needed|date=May 2018}}

{{Infobox boron isotopes}}

Boron (5B) naturally occurs as isotopes {{SimpleNuclide|Boron|10}} and {{SimpleNuclide|Boron|11}}, the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of {{SimpleNuclide|Boron|8}}, with a half-life of only {{val|771.9|(9)|u=ms}} and {{SimpleNuclide|Boron|12}} with a half-life of {{val|20.20|(2)|u=ms}}. All other isotopes have half-lives shorter than {{val|17.35|u=ms}}. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for {{SimpleNuclide|Boron|7}} and {{SimpleNuclide|Boron|9}}) while those with mass above 11 mostly become carbon.

File:Boron chart.png

List of isotopes

{{Isotopes table

|symbol=B

|refs=NUBASE2020, AME2020 II

|notes=m, mass#, unc(), var[], spin(), spin# resonance, daughter-st, p, n,

}}

|-id=Boron-7

| {{SimpleNuclide|Boron|7}}

| style="text-align:center" | 5

| style="text-align:center" | {{fsp}}2

| {{val|7.029712|(27)}}

| {{val|570|(14)|u=ys}}
[{{val|801|(20)|u=keV}}]

| p

| {{SimpleNuclide|Beryllium|6}}Subsequently decays by double proton emission to {{SimpleNuclide|Helium|4}} for a net reaction of {{SimpleNuclide|Boron|7}} → {{SimpleNuclide|Helium|4}} + 3{{hsp}}{{SimpleNuclide|Hydrogen|1}}

| (3/2−)

|

|

|-

| {{SimpleNuclide|Boron|8}}Has 1 halo protonIntermediate product of a branch of proton-proton chain in stellar nucleosynthesis as part of the process converting hydrogen to helium

| style="text-align:center" | 5

| style="text-align:center" | {{fsp}}3

| {{val|8.0246073|(11)}}

| {{val|771.9|(9)|u=ms}}

| β+α

| {{SimpleNuclide|Helium|4}}

| 2+

|

|

|-id=Boron-8m

| style="text-indent:1em" | {{SimpleNuclide|Boron|8|m}}

| colspan="3" style="text-indent:2em" | {{val|10624|(8)|u=keV}}

|

|

|

| 0+

|

|

|-id=Boron-9

| {{SimpleNuclide|Boron|9}}

| style="text-align:center" | 5

| style="text-align:center" | {{fsp}}4

| {{val|9.0133296|(10)}}

| {{val|800|(300)|u=zs}}

| p

| | {{SimpleNuclide|Beryllium|8}}Immediately decays into two α particles, for a net reaction of {{SimpleNuclide|Boron|9}} → 2{{hsp}}{{SimpleNuclide|Helium|4}} + {{SimpleNuclide|Hydrogen|1}}

| 3/2−

|

|

|-

| {{SimpleNuclide|Boron|10}}One of the few stable odd-odd nuclei

| style="text-align:center" | 5

| style="text-align:center" | {{fsp}}5

| {{val|10.012936862|(16)}}

| colspan=3 align=center|Stable

| 3+

| colspan=2 align=center|[{{val|0.189}}, {{val|0.204}}]{{Cite web|title=Atomic Weight of Boron|url=https://ciaaw.org/boron.htm|website=CIAAW}}

|-id=Boron-11

| {{SimpleNuclide|Boron|11}}

| style="text-align:center" | 5

| style="text-align:center" | {{fsp}}6

| {{val|11.009305167|(13)}}

| colspan=3 align=center|Stable

| 3/2−

| colspan=2 align=center|[{{val|0.796}}, {{val|0.811}}]

|-id=Boron-11m

| style="text-indent:1em" | {{SimpleNuclide|Boron|11|m}}

| colspan="3" style="text-indent:2em" | {{val|12560|(9)|u=keV}}

|

|

|

| 1/2+, (3/2+)

|

|

|-id=Boron-12

| rowspan=2|{{SimpleNuclide|Boron|12}}

| rowspan=2 style="text-align:center" | 5

| rowspan=2 style="text-align:center" | {{fsp}}7

| rowspan=2|{{val|12.0143526|(14)}}

| rowspan=2|{{val|20.20|(2)|u=ms}}

| β ({{val|99.40|(2)|u=%}})

| {{SimpleNuclide|Carbon|12}}

| rowspan=2|1+

| rowspan=2|

| rowspan=2|

|-

| βα ({{val|0.60|(2)|u=%}})

| {{SimpleNuclide|Beryllium|8}}Immediately decays into two α particles, for a net reaction of {{SimpleNuclide|Boron|12}} → 3{{hsp}}{{SimpleNuclide|Helium|4}} + {{e-}}

|-id=Boron-13

| rowspan=2|{{SimpleNuclide|Boron|13}}

| rowspan=2 style="text-align:center" | 5

| rowspan=2 style="text-align:center" | {{fsp}}8

| rowspan=2|{{val|13.0177800|(11)}}

| rowspan=2|{{val|17.16|(18)|u=ms}}

| β ({{val|99.734|(36)|u=%}})

| {{SimpleNuclide|Carbon|13}}

| rowspan=2|3/2−

| rowspan=2|

| rowspan=2|

|-

| βn ({{val|0.266|(36)|u=%}})

| {{SimpleNuclide|Carbon|12}}

|-id=Boron-14

| rowspan=3|{{SimpleNuclide|Boron|14}}

| rowspan=3 style="text-align:center" | 5

| rowspan=3 style="text-align:center" | {{fsp}}9

| rowspan=3|{{val|14.025404|(23)}}

| rowspan=3|{{val|12.36|(29)|u=ms}}

| β ({{val|93.96|(23)|u=%}})

| {{SimpleNuclide|Carbon|14}}

| rowspan=3|2−

| rowspan=3|

| rowspan=3|

|-

| βn ({{val|6.04|(23)|u=%}})

| {{SimpleNuclide|Carbon|13}}

|-

| β2n ?Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

| {{SimpleNuclide|Carbon|12}} ?

|-id=Boron-14m

| style="text-indent:1em" | {{SimpleNuclide|Boron|14|m}}

| colspan="3" style="text-indent:2em" | {{val|17065|(29)|u=keV}}

| {{val|4.15|(1.90)|u=zs}}

| IT ?

|

| 0+

|

|

|-id=Boron-15

| rowspan=3|{{SimpleNuclide|Boron|15}}

| rowspan=3 style="text-align:center" | 5

| rowspan=3 style="text-align:center" | 10

| rowspan=3|{{val|15.031087|(23)}}

| rowspan=3|{{val|10.18|(35)|u=ms}}

| βn ({{val|98.7|(1.0)|u=%}})

| {{SimpleNuclide|Carbon|14}}

| rowspan=3|3/2−

| rowspan=3|

| rowspan=3|

|-

| β (< {{val|1.3|u=%}})

| {{SimpleNuclide|Carbon|15}}

|-

| β2n (< {{val|1.5|u=%}})

| {{SimpleNuclide|Carbon|13}}

|-id=Boron-16

| {{SimpleNuclide|Boron|16}}

| style=text-align:center | 5

| style=text-align:center | 11

| {{val|16.039841|(26)}}

| > {{val|4.6|u=zs}}

| n ?

| {{SimpleNuclide|Boron|15}} ?

| 0−

|

|

|-id=Boron-17

| rowspan=5|{{SimpleNuclide|Boron|17}}Has 2 halo neutrons

| rowspan=5 style=text-align:center | 5

| rowspan=5 style=text-align:center | 12

| rowspan=5|{{val|17.04693|(22)}}

| rowspan=5|{{val|5.08|(5)|u=ms}}

| βn ({{val|63|(1)|u=%}})

| {{SimpleNuclide|Carbon|16}}

| rowspan=5|(3/2−)

| rowspan=5|

| rowspan=5|

|-

| β ({{val|21.1|(2.4)|u=%}})

| {{SimpleNuclide|Carbon|17}}

|-

| β2n ({{val|12|(2)|u=%}})

| {{SimpleNuclide|Carbon|15}}

|-

| β3n ({{val|3.5|(7)|u=%}})

| {{SimpleNuclide|Carbon|14}}

|-

| β4n ({{val|0.4|(3)|u=%}})

| {{SimpleNuclide|Carbon|13}}

|-id=Boron-18

| {{SimpleNuclide|Boron|18}}

| style=text-align:center | 5

| style=text-align:center | 13

| {{val|18.05560|(22)}}

| < {{val|26|u=ns}}

| n

| {{SimpleNuclide|Boron|17}}

| (2−)

|

|

|-id=Boron-19

| rowspan=4|{{SimpleNuclide|Boron|19}}Has 4 halo neutrons

| rowspan=4 style=text-align:center | 5

| rowspan=4 style=text-align:center | 14

| rowspan=4|{{val|19.06417|(56)}}

| rowspan=4|{{val|2.92|(13)|u=ms}}

| βn ({{val|71|(9)|u=%}})

| {{SimpleNuclide|Carbon|18}}

| rowspan=4|(3/2−)

| rowspan=4|

| rowspan=4|

|-

| β2n ({{val|17|(5)|u=%}})

| {{SimpleNuclide|Carbon|17}}

|-

| β3n (< {{val|9.1|u=%}})

| {{SimpleNuclide|Carbon|16}}

|-

| β (> {{val|2.9|u=%}})

| {{SimpleNuclide|Carbon|19}}

|-id=Boron-20

| {{SimpleNuclide|Boron|20}}{{cite journal|last=Leblond|first=S.|display-authors=etal|title=First observation of 20B and 21B|journal=Physical Review Letters|volume=121|issue=26|pages=262502–1–262502–6|doi=10.1103/PhysRevLett.121.262502|pmid=30636115|arxiv=1901.00455

|year=2018|s2cid=58602601}}

| style=text-align:center | 5

| style=text-align:center | 15

| {{val|20.07451|(59)}}

| > {{val|912.4|u=ys}}

| n

| {{SimpleNuclide|Boron|19}}

| (1−, 2−)

|

|

|-id=Boron-21

| {{SimpleNuclide|Boron|21}}

| style=text-align:center | 5

| style=text-align:center | 16

| {{val|21.08415|(60)}}

| > {{val|760|u=ys}}

| 2n

| {{SimpleNuclide|Boron|19}}

| (3/2−)

|

|

{{Isotopes table/footer}}

Boron-8

Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of {{val|771.9|(9)|u=ms}}. It is the strongest candidate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11.{{cite journal |last1=Maaß |first1=Bernhard |last2=Müller |first2=Peter |last3=Nörtershäuser |first3=Wilfried |last4=Clark |first4=Jason |last5=Gorges |first5=Christian |last6=Kaufmann |first6=Simon |last7=König |first7=Kristian |last8=Krämer |first8=Jörg |last9=Levand |first9=Anthony |last10=Orford |first10=Rodney |last11=Sánchez |first11=Rodolfo |last12=Savard |first12=Guy |last13=Sommer |first13=Felix |title=Towards laser spectroscopy of the proton-halo candidate boron-8 |journal=Hyperfine Interactions |date=November 2017 |volume=238 |issue=1 |page=25 |doi=10.1007/s10751-017-1399-5|bibcode=2017HyInt.238...25M |s2cid=254551036 }}

Although boron-8 beta decay neutrinos from the Sun make up only about 80 ppm of the total solar neutrino flux, they have a higher energy centered around 10 MeV,{{cite journal |first=A. |last=Bellerive |year=2004 |title=Review of solar neutrino experiments |journal=International Journal of Modern Physics A |volume=19 |issue=8 |pages=1167–1179 |bibcode=2004IJMPA..19.1167B |arxiv=hep-ex/0312045 |doi=10.1142/S0217751X04019093|s2cid=16980300 }} and are an important background to dark matter direct detection experiments.{{cite journal|last1=Cerdeno|first1=David G.|last2=Fairbairn|first2=Malcolm|last3=Jubb|first3=Thomas|last4=Machado|first4=Pedro|last5=Vincent|first5=Aaron C.|last6=Boehm|first6=Celine|title=Physics from solar neutrinos in dark matter direct detection experiments|journal=JHEP|date=2016|volume=2016|issue=5|page=118|doi=10.1007/JHEP05(2016)118|arxiv=1604.01025|bibcode=2016JHEP...05..118C|s2cid=55112052}} They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.

Applications

=Boron-10=

Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.

References

{{Reflist}}

{{Navbox element isotopes}}

{{Authority control}}

Category:Boron

Boron

https://borates.today/isotopes-a-comprehensive-guide/#:~:text=Boron%20isotope%20elements%20with%20masses,11%20mostly%20decay%20into%20carbon.