Isotopes of boron#Boron-14
{{Short description|none}}
{{more citations needed|date=May 2018}}
{{Infobox boron isotopes}}
Boron (5B) naturally occurs as isotopes {{SimpleNuclide|Boron|10}} and {{SimpleNuclide|Boron|11}}, the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of {{SimpleNuclide|Boron|8}}, with a half-life of only {{val|771.9|(9)|u=ms}} and {{SimpleNuclide|Boron|12}} with a half-life of {{val|20.20|(2)|u=ms}}. All other isotopes have half-lives shorter than {{val|17.35|u=ms}}. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for {{SimpleNuclide|Boron|7}} and {{SimpleNuclide|Boron|9}}) while those with mass above 11 mostly become carbon.
List of isotopes
{{Isotopes table
|symbol=B
|refs=NUBASE2020, AME2020 II
|notes=m, mass#, unc(), var[], spin(), spin# resonance, daughter-st, p, n,
}}
|-id=Boron-7
| {{SimpleNuclide|Boron|7}}
| style="text-align:center" | 5
| style="text-align:center" | {{fsp}}2
| {{val|7.029712|(27)}}
| {{val|570|(14)|u=ys}}
[{{val|801|(20)|u=keV}}]
| p
| {{SimpleNuclide|Beryllium|6}}Subsequently decays by double proton emission to {{SimpleNuclide|Helium|4}} for a net reaction of {{SimpleNuclide|Boron|7}} → {{SimpleNuclide|Helium|4}} + 3{{hsp}}{{SimpleNuclide|Hydrogen|1}}
| (3/2−)
|
|
|-
| {{SimpleNuclide|Boron|8}}Has 1 halo protonIntermediate product of a branch of proton-proton chain in stellar nucleosynthesis as part of the process converting hydrogen to helium
| style="text-align:center" | 5
| style="text-align:center" | {{fsp}}3
| {{val|8.0246073|(11)}}
| {{val|771.9|(9)|u=ms}}
| {{SimpleNuclide|Helium|4}}
| 2+
|
|
|-id=Boron-8m
| style="text-indent:1em" | {{SimpleNuclide|Boron|8|m}}
| colspan="3" style="text-indent:2em" | {{val|10624|(8)|u=keV}}
|
|
|
| 0+
|
|
|-id=Boron-9
| {{SimpleNuclide|Boron|9}}
| style="text-align:center" | 5
| style="text-align:center" | {{fsp}}4
| {{val|9.0133296|(10)}}
| {{val|800|(300)|u=zs}}
| p
| | {{SimpleNuclide|Beryllium|8}}Immediately decays into two α particles, for a net reaction of {{SimpleNuclide|Boron|9}} → 2{{hsp}}{{SimpleNuclide|Helium|4}} + {{SimpleNuclide|Hydrogen|1}}
| 3/2−
|
|
|-
| {{SimpleNuclide|Boron|10}}One of the few stable odd-odd nuclei
| style="text-align:center" | 5
| style="text-align:center" | {{fsp}}5
| {{val|10.012936862|(16)}}
| colspan=3 align=center|Stable
| 3+
| colspan=2 align=center|[{{val|0.189}}, {{val|0.204}}]{{Cite web|title=Atomic Weight of Boron|url=https://ciaaw.org/boron.htm|website=CIAAW}}
|-id=Boron-11
| {{SimpleNuclide|Boron|11}}
| style="text-align:center" | 5
| style="text-align:center" | {{fsp}}6
| {{val|11.009305167|(13)}}
| colspan=3 align=center|Stable
| 3/2−
| colspan=2 align=center|[{{val|0.796}}, {{val|0.811}}]
|-id=Boron-11m
| style="text-indent:1em" | {{SimpleNuclide|Boron|11|m}}
| colspan="3" style="text-indent:2em" | {{val|12560|(9)|u=keV}}
|
|
|
| 1/2+, (3/2+)
|
|
|-id=Boron-12
| rowspan=2|{{SimpleNuclide|Boron|12}}
| rowspan=2 style="text-align:center" | 5
| rowspan=2 style="text-align:center" | {{fsp}}7
| rowspan=2|{{val|12.0143526|(14)}}
| rowspan=2|{{val|20.20|(2)|u=ms}}
| β− ({{val|99.40|(2)|u=%}})
| {{SimpleNuclide|Carbon|12}}
| rowspan=2|1+
| rowspan=2|
| rowspan=2|
|-
| β−α ({{val|0.60|(2)|u=%}})
| {{SimpleNuclide|Beryllium|8}}Immediately decays into two α particles, for a net reaction of {{SimpleNuclide|Boron|12}} → 3{{hsp}}{{SimpleNuclide|Helium|4}} + {{e-}}
|-id=Boron-13
| rowspan=2|{{SimpleNuclide|Boron|13}}
| rowspan=2 style="text-align:center" | 5
| rowspan=2 style="text-align:center" | {{fsp}}8
| rowspan=2|{{val|13.0177800|(11)}}
| rowspan=2|{{val|17.16|(18)|u=ms}}
| β− ({{val|99.734|(36)|u=%}})
| {{SimpleNuclide|Carbon|13}}
| rowspan=2|3/2−
| rowspan=2|
| rowspan=2|
|-
| β−n ({{val|0.266|(36)|u=%}})
| {{SimpleNuclide|Carbon|12}}
|-id=Boron-14
| rowspan=3|{{SimpleNuclide|Boron|14}}
| rowspan=3 style="text-align:center" | 5
| rowspan=3 style="text-align:center" | {{fsp}}9
| rowspan=3|{{val|14.025404|(23)}}
| rowspan=3|{{val|12.36|(29)|u=ms}}
| β− ({{val|93.96|(23)|u=%}})
| {{SimpleNuclide|Carbon|14}}
| rowspan=3|2−
| rowspan=3|
| rowspan=3|
|-
| β−n ({{val|6.04|(23)|u=%}})
| {{SimpleNuclide|Carbon|13}}
|-
| {{SimpleNuclide|Carbon|12}} ?
|-id=Boron-14m
| style="text-indent:1em" | {{SimpleNuclide|Boron|14|m}}
| colspan="3" style="text-indent:2em" | {{val|17065|(29)|u=keV}}
| {{val|4.15|(1.90)|u=zs}}
| IT ?
|
| 0+
|
|
|-id=Boron-15
| rowspan=3|{{SimpleNuclide|Boron|15}}
| rowspan=3 style="text-align:center" | 5
| rowspan=3 style="text-align:center" | 10
| rowspan=3|{{val|15.031087|(23)}}
| rowspan=3|{{val|10.18|(35)|u=ms}}
| β−n ({{val|98.7|(1.0)|u=%}})
| {{SimpleNuclide|Carbon|14}}
| rowspan=3|3/2−
| rowspan=3|
| rowspan=3|
|-
| β− (< {{val|1.3|u=%}})
| {{SimpleNuclide|Carbon|15}}
|-
| β−2n (< {{val|1.5|u=%}})
| {{SimpleNuclide|Carbon|13}}
|-id=Boron-16
| {{SimpleNuclide|Boron|16}}
| style=text-align:center | 5
| style=text-align:center | 11
| {{val|16.039841|(26)}}
| > {{val|4.6|u=zs}}
| n ?
| {{SimpleNuclide|Boron|15}} ?
| 0−
|
|
|-id=Boron-17
| rowspan=5|{{SimpleNuclide|Boron|17}}Has 2 halo neutrons
| rowspan=5 style=text-align:center | 5
| rowspan=5 style=text-align:center | 12
| rowspan=5|{{val|17.04693|(22)}}
| rowspan=5|{{val|5.08|(5)|u=ms}}
| β−n ({{val|63|(1)|u=%}})
| {{SimpleNuclide|Carbon|16}}
| rowspan=5|(3/2−)
| rowspan=5|
| rowspan=5|
|-
| β− ({{val|21.1|(2.4)|u=%}})
| {{SimpleNuclide|Carbon|17}}
|-
| β−2n ({{val|12|(2)|u=%}})
| {{SimpleNuclide|Carbon|15}}
|-
| β−3n ({{val|3.5|(7)|u=%}})
| {{SimpleNuclide|Carbon|14}}
|-
| β−4n ({{val|0.4|(3)|u=%}})
| {{SimpleNuclide|Carbon|13}}
|-id=Boron-18
| {{SimpleNuclide|Boron|18}}
| style=text-align:center | 5
| style=text-align:center | 13
| {{val|18.05560|(22)}}
| < {{val|26|u=ns}}
| n
| {{SimpleNuclide|Boron|17}}
| (2−)
|
|
|-id=Boron-19
| rowspan=4|{{SimpleNuclide|Boron|19}}Has 4 halo neutrons
| rowspan=4 style=text-align:center | 5
| rowspan=4 style=text-align:center | 14
| rowspan=4|{{val|19.06417|(56)}}
| rowspan=4|{{val|2.92|(13)|u=ms}}
| β−n ({{val|71|(9)|u=%}})
| {{SimpleNuclide|Carbon|18}}
| rowspan=4|(3/2−)
| rowspan=4|
| rowspan=4|
|-
| β−2n ({{val|17|(5)|u=%}})
| {{SimpleNuclide|Carbon|17}}
|-
| β−3n (< {{val|9.1|u=%}})
| {{SimpleNuclide|Carbon|16}}
|-
| β− (> {{val|2.9|u=%}})
| {{SimpleNuclide|Carbon|19}}
|-id=Boron-20
| {{SimpleNuclide|Boron|20}}{{cite journal|last=Leblond|first=S.|display-authors=etal|title=First observation of 20B and 21B|journal=Physical Review Letters|volume=121|issue=26|pages=262502–1–262502–6|doi=10.1103/PhysRevLett.121.262502|pmid=30636115|arxiv=1901.00455
|year=2018|s2cid=58602601}}
| style=text-align:center | 5
| style=text-align:center | 15
| {{val|20.07451|(59)}}
| > {{val|912.4|u=ys}}
| n
| {{SimpleNuclide|Boron|19}}
| (1−, 2−)
|
|
|-id=Boron-21
| style=text-align:center | 5
| style=text-align:center | 16
| {{val|21.08415|(60)}}
| > {{val|760|u=ys}}
| 2n
| {{SimpleNuclide|Boron|19}}
| (3/2−)
|
|
{{Isotopes table/footer}}
Boron-8
Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of {{val|771.9|(9)|u=ms}}. It is the strongest candidate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11.{{cite journal |last1=Maaß |first1=Bernhard |last2=Müller |first2=Peter |last3=Nörtershäuser |first3=Wilfried |last4=Clark |first4=Jason |last5=Gorges |first5=Christian |last6=Kaufmann |first6=Simon |last7=König |first7=Kristian |last8=Krämer |first8=Jörg |last9=Levand |first9=Anthony |last10=Orford |first10=Rodney |last11=Sánchez |first11=Rodolfo |last12=Savard |first12=Guy |last13=Sommer |first13=Felix |title=Towards laser spectroscopy of the proton-halo candidate boron-8 |journal=Hyperfine Interactions |date=November 2017 |volume=238 |issue=1 |page=25 |doi=10.1007/s10751-017-1399-5|bibcode=2017HyInt.238...25M |s2cid=254551036 }}
Although boron-8 beta decay neutrinos from the Sun make up only about 80 ppm of the total solar neutrino flux, they have a higher energy centered around 10 MeV,{{cite journal |first=A. |last=Bellerive |year=2004 |title=Review of solar neutrino experiments |journal=International Journal of Modern Physics A |volume=19 |issue=8 |pages=1167–1179 |bibcode=2004IJMPA..19.1167B |arxiv=hep-ex/0312045 |doi=10.1142/S0217751X04019093|s2cid=16980300 }} and are an important background to dark matter direct detection experiments.{{cite journal|last1=Cerdeno|first1=David G.|last2=Fairbairn|first2=Malcolm|last3=Jubb|first3=Thomas|last4=Machado|first4=Pedro|last5=Vincent|first5=Aaron C.|last6=Boehm|first6=Celine|title=Physics from solar neutrinos in dark matter direct detection experiments|journal=JHEP|date=2016|volume=2016|issue=5|page=118|doi=10.1007/JHEP05(2016)118|arxiv=1604.01025|bibcode=2016JHEP...05..118C|s2cid=55112052}} They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.
Applications
=Boron-10=
Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.
References
{{Reflist}}
{{Navbox element isotopes}}
{{Authority control}}
https://borates.today/isotopes-a-comprehensive-guide/#:~:text=Boron%20isotope%20elements%20with%20masses,11%20mostly%20decay%20into%20carbon.