Isotopes of nickel#Nickel-57
{{Short description|none}}{{Use dmy dates|date=June 2022}}
{{Infobox nickel isotopes}}
Naturally occurring nickel ({{sub|28}}Ni) consists of five stable isotopes; {{sup|58}}Ni, {{sup|60}}Ni, {{sup|61}}Ni, Nickel-62 and {{sup|64}}Ni; {{sup|58}}Ni is the most abundant (68.077% natural abundance).{{cite web|url=http://education.jlab.org/itselemental/iso028.html|title=Isotopes of the Element Nickel|work=Science education|publisher=Jefferson Lab}} 26 radioisotopes have been characterized; the most stable are {{sup|59}}Ni with a half-life of 81,000 years, {{sup|63}}Ni with a half-life of 100.1 years, and {{sup|56}}Ni (6.077 days). All the other radioactive isotopes have half-lives of less than 60 hours and most of these have half-lives of less than 30 seconds. This element also has 8 meta states.
List of isotopes
{{Isotopes table
|symbol=Ni
|refs=NUBASE2020, AME2020 II
|notes=m, unc(), mass#, hl#, spin(), spin#, daughter-st, IT, EC, n
}}
|-
|rowspan=3| {{SimpleNuclide|Nickel|48}}
|rowspan=3 style="text-align:right" | 28
|rowspan=3 style="text-align:right" | 20
|rowspan=3| 48.01952(46)#
|rowspan=3| 2.8(8) ms
|2p (70%)
|{{SimpleNuclide|Fe|46}}
|rowspan=3| 0+
|rowspan=3|
|rowspan=3|
|-
|β+ (30%)
|{{SimpleNuclide|Co|48}}
|-
|β+, p?
|{{SimpleNuclide|Fe|47}}
|-id=Nickel-49
|rowspan=2| {{SimpleNuclide|Nickel|49}}
|rowspan=2 style="text-align:right" | 28
|rowspan=2 style="text-align:right" | 21
|rowspan=2| 49.00916(64)#
|rowspan=2| 7.5(10) ms
|β+, p (83%)
|{{SimpleNuclide|Fe|48}}
|rowspan=2| 7/2−#
|rowspan=2|
|rowspan=2|
|-
|β+ (17%)
|{{SimpleNuclide|Co|49}}
|-id=Nickel-50
|rowspan=3| {{SimpleNuclide|Nickel|50}}
|rowspan=3 style="text-align:right" | 28
|rowspan=3 style="text-align:right" | 22
|rowspan=3| 49.99629(54)#
|rowspan=3| 18.5(12) ms
| β+, p (73%)
| {{SimpleNuclide|Fe|49}}
|rowspan=3| 0+
|rowspan=3|
|rowspan=3|
|-
|β+, 2p (14%)
|{{SimpleNuclide|Mn|48}}
|-
|β+ (13%)
|{{SimpleNuclide|Co|50}}
|-id=Nickel-51
|rowspan=3| {{SimpleNuclide|Nickel|51}}
|rowspan=3 style="text-align:right" | 28
|rowspan=3 style="text-align:right" | 23
|rowspan=3| 50.98749(54)#
|rowspan=3| 23.8(2) ms
| β+, p (87.2%)
| {{SimpleNuclide|Fe|50}}
|rowspan=3| 7/2−#
|rowspan=3|
|rowspan=3|
|-
|β+ (12.3%)
|{{SimpleNuclide|Co|51}}
|-
|β+, 2p (0.5%)
|{{SimpleNuclide|Mn|49}}
|-id=Nickel-52
| rowspan=2|{{SimpleNuclide|Nickel|52}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 24
| rowspan=2|51.975781(89)
| rowspan=2|41.8(10) ms
| β+ (68.9%)
| {{SimpleNuclide|Co|52}}
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β+, p (31.1%)
| {{SimpleNuclide|Fe|51}}
|-id=Nickel-53
| rowspan=2|{{SimpleNuclide|Nickel|53}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 25
| rowspan=2|52.968190(27)
| rowspan=2|55.2(7) ms
| β+ (77.3%)
| {{SimpleNuclide|Co|53}}
| rowspan=2|(7/2−)
| rowspan=2|
| rowspan=2|
|-
| β+, p (22.7%)
| {{SimpleNuclide|Fe|52}}
|-id=Nickel-54
| rowspan=2|{{SimpleNuclide|Nickel|54}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 26
| rowspan=2|53.9578330(50)
| rowspan=2|114.1(3) ms
| β+
| {{SimpleNuclide|Co|54}}
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β+, p?
| {{SimpleNuclide|Fe|53}}
|-id=Nickel-54m
| rowspan=2 style="text-indent:1em" | {{SimpleNuclide|Nickel|54|m}}
| rowspan=2 colspan="3" style="text-indent:2em" | 6457.4(9) keV
| rowspan=2|152(4) ns
| IT (64%)
| {{SimpleNuclide|Ni|54}}
| rowspan=2|10+
| rowspan=2|
| rowspan=2|
|-
| p (36%)
| {{SimpleNuclide|Co|53}}
|-id=Nickel-55
| {{SimpleNuclide|Nickel|55}}
| style="text-align:right" | 28
| style="text-align:right" | 27
| 54.95132985(76)
| 203.9(13) ms
| β+
| {{SimpleNuclide|Co|55}}
| 7/2−
|
|
|-
| rowspan=2|{{SimpleNuclide|Nickel|56}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 28
| rowspan=2|55.94212776(43)
| rowspan=2|6.075(10) d
| EC
| {{SimpleNuclide|Cobalt|56}}
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| {{SimpleNuclide|Cobalt|56}}
|-id=Nickel-57
| {{SimpleNuclide|Nickel|57}}
| style="text-align:right" | 28
| style="text-align:right" | 29
| 56.93979139(61)
| 35.60(6) h
| β+
| {{SimpleNuclide|Cobalt|57}}
| 3/2−
|
|
|-
| {{SimpleNuclide|Nickel|58}}
| style="text-align:right" | 28
| style="text-align:right" | 30
| 57.93534165(37)
| colspan=3 align=center|Observationally stableBelieved to decay by β+β+ to {{SimpleNuclide|Fe|58}} with a half-life over 7×1020 years
| 0+
| 0.680769(190)
|
|-
| rowspan=2 | {{SimpleNuclide|Nickel|59}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 31
| rowspan=2 | 58.93434544(38)
| rowspan=2 | 8.1(5)×104 y
| EC (99%)
| rowspan=2 | {{SimpleNuclide|Cobalt|59}}
| rowspan=2 | 3/2−
| rowspan=2 |
| rowspan=2 |
|-
|-
| {{SimpleNuclide|Nickel|60}}
| style="text-align:right" | 28
| style="text-align:right" | 32
| 59.93078513(38)
| colspan=3 align=center|Stable
| 0+
| 0.262231(150)
|
|-id=Nickel-61
| {{SimpleNuclide|Nickel|61}}
| style="text-align:right" | 28
| style="text-align:right" | 33
| 60.93105482(38)
| colspan=3 align=center|Stable
| 3/2−
| 0.011399(13)
|
|-
| {{SimpleNuclide|link=yes|Nickel|62}}Highest binding energy per nucleon of all nuclides
| style="text-align:right" | 28
| style="text-align:right" | 34
| 61.92834475(46)
| colspan=3 align=center|Stable
| 0+
| 0.036345(40)
|
|-
| {{SimpleNuclide|Nickel|63}}
| style="text-align:right" | 28
| style="text-align:right" | 35
| 62.92966902(46)
| 101.2(15) y
| β−
| {{SimpleNuclide|Copper|63}}
| 1/2−
|
|
|-id=Nickel-63m
| style="text-indent:1em" | {{SimpleNuclide|Nickel|63|m}}
| colspan="3" style="text-indent:2em" | 87.15(11) keV
| 1.67(3) μs
| IT
| 63Ni
| 5/2−
|
|
|-
| {{SimpleNuclide|Nickel|64}}
| style="text-align:right" | 28
| style="text-align:right" | 36
| 63.92796623(50)
| colspan=3 align=center|Stable
| 0+
| 0.009256(19)
|
|-id=Nickel-65
| {{SimpleNuclide|Nickel|65}}
| style="text-align:right" | 28
| style="text-align:right" | 37
| 64.93008459(52)
| 2.5175(5) h
| β−
| {{SimpleNuclide|Copper|65}}
| 5/2−
|
|
|-id=Nickel-65m
| style="text-indent:1em" | {{SimpleNuclide|Nickel|65|m}}
| colspan="3" style="text-indent:2em" | 63.37(5) keV
| 69(3) μs
| IT
| 65Ni
| 1/2−
|
|
|-id=Nickel-66
| {{SimpleNuclide|Nickel|66}}
| style="text-align:right" | 28
| style="text-align:right" | 38
| 65.9291393(15)
| 54.6(3) h
| β−
| {{SimpleNuclide|Copper|66}}
| 0+
|
|
|-id=Nickel-67
| {{SimpleNuclide|Nickel|67}}
| style="text-align:right" | 28
| style="text-align:right" | 39
| 66.9315694(31)
| 21(1) s
| β−
| {{SimpleNuclide|Copper|67}}
| 1/2−
|
|
|-id=Nickel-67m
| rowspan=2 style="text-indent:1em" | {{SimpleNuclide|Nickel|67|m}}
| rowspan=2 colspan="3" style="text-indent:2em" | 1006.6(2) keV
| rowspan=2|13.34(19) μs
| IT
| {{SimpleNuclide|Nickel|67}}
| rowspan=2|9/2+
| rowspan=2|
| rowspan=2|
|-
| IT
| {{SimpleNuclide|Ni|67}}
|-id=Nickel-68
| {{SimpleNuclide|Nickel|68}}
| style="text-align:right" | 28
| style="text-align:right" | 40
| 67.9318688(32)
| 29(2) s
| β−
| {{SimpleNuclide|Copper|68}}
| 0+
|
|
|-id=Nickel-68m1
| style="text-indent:1em" | {{SimpleNuclide|Nickel|68|m1}}
| colspan="3" style="text-indent:2em" | 1603.51(28) keV
| 270(5) ns
| IT
| 68Ni
| 0+
|
|
|-id=Nickel-68m2
| style="text-indent:1em" | {{SimpleNuclide|Nickel|68|m2}}
| colspan="3" style="text-indent:2em" | 2849.1(3) keV
| 850(30) μs
| IT
| 68Ni
| 5−
|
|
|-id=Nickel-69
| {{SimpleNuclide|Nickel|69}}
| style="text-align:right" | 28
| style="text-align:right" | 41
| 68.9356103(40)
| 11.4(3) s
| β−
| {{SimpleNuclide|Copper|69}}
| (9/2+)
|
|
|-id=Nickel-69m1
| rowspan=2 style="text-indent:1em" | {{SimpleNuclide|Nickel|69|m1}}
| rowspan=2 colspan="3" style="text-indent:2em" | 321(2) keV
| rowspan=2|3.5(4) s
| β−
| {{SimpleNuclide|Copper|69}}
| rowspan=2|(1/2−)
| rowspan=2|
| rowspan=2|
|-
| IT (<0.01%)
| {{SimpleNuclide|Ni|69}}
|-id=Nickel-69m2
| style="text-indent:1em" | {{SimpleNuclide|Nickel|69|m2}}
| colspan="3" style="text-indent:2em" | 2700.0(10) keV
| 439(3) ns
| IT
| 69Ni
| (17/2−)
|
|
|-id=Nickel-70
| {{SimpleNuclide|Nickel|70}}
| style="text-align:right" | 28
| style="text-align:right" | 42
| 69.9364313(23)
| 6.0(3) s
| β−
| {{SimpleNuclide|Copper|70}}
| 0+
|
|
|-id=Nickel-70m
| style="text-indent:1em" | {{SimpleNuclide|Nickel|70|m}}
| colspan="3" style="text-indent:2em" | 2860.91(8) keV
| 232(1) ns
| IT
| 70Ni
| 8+
|
|
|-id=Nickel-71
| {{SimpleNuclide|Nickel|71}}
| style="text-align:right" | 28
| style="text-align:right" | 43
| 70.9405190(24)
| 2.56(3) s
| β−
| {{SimpleNuclide|Copper|71}}
| (9/2+)
|
|
|-id=Nickel-71m
| style="text-indent:1em" | {{SimpleNuclide|Nickel|71|m}}
| colspan="3" style="text-indent:2em" | 499(5) keV
| 2.3(3) s
| β−
| 71Cu
| (1/2−)
|
|
|-id=Nickel-72
| rowspan=2|{{SimpleNuclide|Nickel|72}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 44
| rowspan=2|71.9417859(24)
| rowspan=2|1.57(5) s
| β−
| {{SimpleNuclide|Copper|72}}
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n?
| {{SimpleNuclide|Copper|71}}
|-id=Nickel-73
| rowspan=2|{{SimpleNuclide|Nickel|73}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 45
| rowspan=2|72.9462067(26)
| rowspan=2|840(30) ms
| β−
| {{SimpleNuclide|Copper|73}}
| rowspan=2|(9/2+)
| rowspan=2|
| rowspan=2|
|-
| β−, n?
| {{SimpleNuclide|Copper|72}}
|-id=Nickel-74
| rowspan=2|{{SimpleNuclide|Nickel|74}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 46
| rowspan=2|507.7(46) ms
| β−
| {{SimpleNuclide|Copper|74}}
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n?
| {{SimpleNuclide|Copper|73}}
|-id=Nickel-75
| rowspan=2|{{SimpleNuclide|Nickel|75}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 47
| rowspan=2|331.6(32) ms
| β− (90.0%)
| {{SimpleNuclide|Copper|75}}
| rowspan=2|9/2+#
| rowspan=2|
| rowspan=2|
|-
| β−, n (10.0%)
| {{SimpleNuclide|Copper|74}}
|-id=Nickel-76
| rowspan=2|{{SimpleNuclide|Nickel|76}}
| rowspan=2 style="text-align:right" | 28
| rowspan=2 style="text-align:right" | 48
| rowspan=2|75.95471(32)#
| rowspan=2|234.6(27) ms
| β− (86.0%)
| {{SimpleNuclide|Copper|76}}
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (14.0%)
| {{SimpleNuclide|Copper|75}}
|-id=Nickel-76m
| style="text-indent:1em" | {{SimpleNuclide|Nickel|76|m}}
| colspan="3" style="text-indent:2em" | 2418.0(5) keV
| 547.8(33) ns
| IT
| 76Ni
| (8+)
|
|
|-id=Nickel-77
| rowspan=3|{{SimpleNuclide|Nickel|77}}
| rowspan=3 style="text-align:right" | 28
| rowspan=3 style="text-align:right" | 49
| rowspan=3|76.95990(43)#
| rowspan=3|158.9(42) ms
| β− (74%)
| {{SimpleNuclide|Copper|77}}
| rowspan=3|9/2+#
| rowspan=3|
| rowspan=3|
|-
| β−, n (26%)
| {{SimpleNuclide|Copper|76}}
|-
| β−, 2n?
| {{SimpleNuclide|Copper|75}}
|-
| rowspan=3|{{SimpleNuclide|Nickel|78}}
| rowspan=3 style="text-align:right" | 28
| rowspan=3 style="text-align:right" | 50
| rowspan=3|77.96256(43)#
| rowspan=3|122.2(51) ms
| β−
| {{SimpleNuclide|Copper|78}}
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−, n?
| {{SimpleNuclide|Copper|77}}
|-
| β−, 2n?
| {{SimpleNuclide|Copper|76}}
|-id=Nickel-79
| rowspan=3|{{SimpleNuclide|Nickel|79}}
| rowspan=3 style="text-align:right" | 28
| rowspan=3 style="text-align:right" | 51
| rowspan=3|78.96977(54)#
| rowspan=3|44(8) ms
| β−
| {{SimpleNuclide|Copper|79}}
| rowspan=3|5/2+#
| rowspan=3|
| rowspan=3|
|-
| β−, n?
| {{SimpleNuclide|Copper|78}}
|-
| β−, 2n?
| {{SimpleNuclide|Copper|77}}
|-id=Nickel-80
| rowspan=3|{{SimpleNuclide|Nickel|80}}
| rowspan=3 style="text-align:right" | 28
| rowspan=3 style="text-align:right" | 52
| rowspan=3|79.97505(64)#
| rowspan=3|30(22) ms
| β−
| {{SimpleNuclide|Copper|80}}
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−, n?
| {{SimpleNuclide|Copper|79}}
|-
| β−, 2n?
| {{SimpleNuclide|Copper|78}}
|-id=Nickel-81
| {{SimpleNuclide|Nickel|81}}
| style="text-align:right" | 28
| style="text-align:right" | 53
| 80.98273(75)#
| 30# ms
[>410 ns]
| β−?
| {{SimpleNuclide|Copper|81}}
| 3/2+#
|
|
|-id=Nickel-82
| {{SimpleNuclide|Nickel|82}}
| style="text-align:right" | 28
| style="text-align:right" | 54
| 81.98849(86)#
| 16# ms
[>410 ns]
| β−?
| {{SimpleNuclide|Copper|82}}
| 0+
|
|
{{Isotopes table/footer}}
Notable isotopes
{{more citations needed section|date=May 2018}}
{{original research|section|date=May 2018}}
The known isotopes of nickel range in mass number from {{sup|48}}Ni to {{sup|82}}Ni, and include:
{{cite web
|title=New nuclides included for the first time in the 2017 evaluation.
|publisher=Discovery of Nuclides Project
|date=22 December 2018
|url=https://people.nscl.msu.edu/~thoennes/isotopes-2017/additional-isotopes-2017.pdf
|access-date =22 May 2018
}}
{{anchor|Nickel-48}}
Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons {{sup|48}}Ni is "doubly magic" (like {{SimpleNuclide|link=yes|Lead|208}}) and therefore much more stable (with a lower limit of its half-life-time of .5 μs) than would be expected from its position in the chart of nuclides.
{{cite web
|title=Discovery of doubly magic nickel
|publisher=CERN Courier
|date=15 March 2000
|url=http://cerncourier.com/cws/article/cern/28206
|access-date =2 April 2013
}} It has the highest ratio of protons to neutrons (proton excess) of any known doubly magic nuclide.{{Cite web |url=http://www.findarticles.com/p/articles/mi_m1200/is_17_156/ai_57799535 |title = Twice-magic metal makes its debut | Science News | Find Articles |archive-url=https://archive.today/20120524134125/http://www.findarticles.com/p/articles/mi_m1200/is_17_156/ai_57799535 |archive-date=24 May 2012 |url-status=dead}}
{{anchor|Nickel-56}}
Nickel-56 is produced in large quantities in supernovae. In the last phases of stellar evolution of very large stars, fusion of lighter elements like hydrogen and helium comes to an end. Later in the star's life cycle, elements including magnesium, silicon, and sulfur are fused to form heavier elements. Once the last nuclear fusion reactions cease, the star collapses to produce a supernova. During the supernova, silicon burning produces {{sup|56}}Ni. This isotope of nickel is favored because it has an equal number of neutrons and protons, making it readily produced by fusing two Silicon-28 atoms. {{sup|56}}Ni is the last element that can be formed in the alpha process. Past {{sup|56}}Ni, nuclear reactions are endoergic and energetically unfavorable. {{sup|56}}Ni decays to Isotopes of cobalt and then Iron-56 by β+ decay.{{Cite journal |last=Umeda |first=Hideyuki |last2=Nomoto |first2=Ken’ichi |date=1 February 2008 |title=How Much 56Ni Can Be Produced in Core‐Collapse Supernovae? Evolution and Explosions of 30–100M⊙ Stars |url=https://doi.org/10.1086/524767 |journal=The Astrophysical Journal |volume=673 |issue=2 |pages=1014-1022 |via=The Institute of Physics (IOP)}} The radioactive decay of {{sup|56}}Ni and {{sup|56}}Co supplies much of the energy for the light curves observed for stellar supernovae.{{Cite journal |last=Bouchet |first=P. |last2=Danziger |first2=I.J. |last3=Lucy |first3=L.B. |date=September 1991 |title=Bolometric Light Curve of SN 1987A: Results from Day 616 to 1316 After Outburst |url=https://doi.org/10.1086/115939 |journal=The Astronomical Journal |volume=102 |issue=3 |pages=1135-1146 |via=Astrophysics Data System}} The shape of the light curve of these supernovae display characteristic timescales corresponding to the decay of {{sup|56}}Ni to {{sup|56}}Co and then to {{sup|56}}Fe.
{{anchor|Nickel-58}}
Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture (EC) from copper-58, and EC + p from zinc-59.
{{anchor|Nickel-59}}
Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 81,000 years. {{sup|59}}Ni has found many applications in isotope geology. {{sup|59}}Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.
{{anchor|Nickel-60}}
Nickel-60 is the daughter product of the extinct radionuclide {{SimpleNuclide|link=yes|Iron|60}} (half-life 2.6 My). Because {{sup|60}}Fe has such a long half-life, its persistence in materials in the Solar System at high enough concentrations may have generated observable variations in the isotopic composition of {{sup|60}}Ni. Therefore, the abundance of {{sup|60}}Ni in extraterrestrial material may provide insight into the origin of the Solar System and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early Solar System. Therefore, so far, no actual age information has been attained from {{sup|60}}Ni excesses. {{sup|60}}Ni is also the stable end-product of the decay of {{sup|60}}Zn, the product of the final rung of the alpha ladder. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.
{{anchor|Nickel61}}
Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.{{cite book |title=High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine |url=https://archive.org/details/highresolutionep00hans |url-access=limited |editor=Graeme Hanson |editor2=Lawrence Berliner |chapter=EPR Investigation of [NiFe] Hydrogenases|author=Maurice van Gastel|author-link2=Wolfgang Lubitz|author2=Wolfgang Lubitz |year=2009 |publisher=Springer |location=Dordrecht |pages=[https://archive.org/details/highresolutionep00hans/page/n453 441]–470|isbn=9780387848563}}
Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, though fusion can form heavier isotopes. For instance, two isotopes of calcium atoms can fuse to form isotopes of krypton plus 4 positrons (plus 4 neutrinos), liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.
{{anchor|Nickel-63}}
Nickel-63 has two main uses: Detection of explosives traces, and in certain kinds of electronic devices, such as gas discharge tubes used as surge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used in Electron capture detector in gas chromatography for the detection mainly of halogens. It is proposed to be used for miniature betavoltaic generators for pacemakers.
{{anchor|Nickel-64}}
Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64.
{{anchor|Nickel-78}}
Nickel-78 is one of the element's heaviest known isotopes. With 28 protons and 50 neutrons, nickel-78 is doubly magic, resulting in much greater nuclear binding energy and stability despite a lopsided neutron-proton ratio. Its half-life is {{nowrap|122 ± 5.1}} milliseconds.{{cite journal |last=Bazin |first=D. |date=2017 |title=Viewpoint: Doubly Magic Nickel |journal=Physics |volume=10 |issue=121 |page=121 |doi=10.1103/Physics.10.121 |url=https://physics.aps.org/articles/v10/121|doi-access=free }} Due to its magic neutron number, {{sup|78}}Ni is believed to have an important role in supernova nucleosynthesis of elements heavier than iron.{{cite news |author=Davide Castelvecchi |url=http://www.skyandtelescope.com/astronomy-news/atom-smashers-shed-light-on-supernovae-big-bang/ |title=Atom Smashers Shed Light on Supernovae, Big Bang |work=Sky & Telescope |date=2005-04-22}} {{sup|78}}Ni, along with N = 50 isotones {{sup|79}}Cu and {{sup|80}}Zn, are thought to constitute a waiting point in the r-process, where further neutron capture is delayed by the shell gap and a buildup of isotopes around A = 80 results.{{cite conference |last1=Pereira |first1=J. |last2=Aprahamian |first2=A. |last3=Arndt |first3=O. |last4=Becerril |first4=A. |last5=Elliot |first5=T. |last6=Estrade |first6=A. |last7=Galaviz |first7=D. |last8=Hennrich |first8=S. |last9=Hosmer |first9=P. |last10=Kessler |first10=R. |last11=Kratz |first11=K.-L. |last12=Lorusso |first12=G. |last13=Mantica |first13=P.F. |last14=Matos |first14=M. |last15=Montes |first15=F. |last16=Santi |first16=P. |last17=Pfeiffer |first17=B. |last18=Quinn |first18=M. |last19=Schatz |first19=H. |last20=Schertz |first20=F. |last21=Schnorrenberger |first21=L. |last22=Smith |first22=E. |last23=Tomlin |first23=B.E. |last24=Walters |first24=W. |last25=Wöhr |first25=A. |title=Beta decay studies of r-process nuclei at the National Superconducting Cyclotron Laboratory |date=2009 |conference=10th Symposium on Nuclei in the Cosmos |location=Mackinac Island |arxiv=0901.1802}}
References
{{Reflist}}
- Isotope masses from:
- {{NUBASE 2003}}
- Isotopic compositions and standard atomic masses from:
- {{CIAAW2003}}
- {{CIAAW 2005}}
- Half-life, spin, and isomer data selected from the following sources.
- {{NUBASE 2003}}
- {{NNDC}}
- {{CRC85|chapter=11}}
- {{cite web |author=IAEA – Nuclear Data Section|title= Livechart – Table of Nuclides |url=https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html |publisher=IAEA – Nuclear Data Section|access-date=23 May 2018}}
{{Navbox element isotopes}}