Isotopes of palladium#Palladium-110
{{Short description|none}}
{{Infobox palladium isotopes}}
Natural palladium ({{sub|46}}Pd) is composed of six stable isotopes, {{sup|102}}Pd, {{sup|104}}Pd, {{sup|105}}Pd, {{sup|106}}Pd, {{sup|108}}Pd, and {{sup|110}}Pd, although {{sup|102}}Pd and {{sup|110}}Pd are theoretically unstable. The most stable radioisotopes are {{sup|107}}Pd with a half-life of 6.5 million years, {{sup|103}}Pd with a half-life of 17 days, and {{sup|100}}Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u ({{sup|91}}Pd) to 128.96 u ({{sup|129}}Pd). Most of these have half-lives that are less than 30 minutes except {{sup|101}}Pd (half-life: 8.47 hours), {{sup|109}}Pd (half-life: 13.7 hours), and {{sup|112}}Pd (half-life: 21 hours).
The primary decay mode before the most abundant stable isotope, {{sup|106}}Pd, is electron capture and the primary mode after is beta decay. The primary decay product before {{sup|106}}Pd is rhodium and the primary product after is silver.
Radiogenic {{sup|107}}Ag is a decay product of {{sup|107}}Pd and was first discovered in the Santa Clara meteorite of 1978.{{cite journal
| author= W. R. Kelly |author2=G. J. Wasserburg
| year = 1978
| title = Evidence for the existence of 107Pd in the early solar system
| journal = Geophysical Research Letters
| volume = 5 | issue = 12| pages = 1079–1082
| doi =10.1029/GL005i012p01079
| bibcode=1978GeoRL...5.1079K
|url=https://authors.library.caltech.edu/43037/
}} The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. {{sup|107}}Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.
{{cite journal
| author= J. H. Chen |author2=G. J. Wasserburg
| year = 1990
| title = The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets
| journal = Geochimica et Cosmochimica Acta
| volume = 54| issue = 6 | pages = 1729–1743
| doi = 10.1016/0016-7037(90)90404-9
|bibcode = 1990GeCoA..54.1729C }}
List of isotopes
{{Isotopes table
| symbol = Pd
| refs = NUBASE2020, AME2020 II
| notes = m, unc(), mass#, exen#, hl#, spin(), spin#, daughter-st, IT, EC, p
}}
|-id=Palladium-90
| rowspan=3|90Pd
| rowspan=3 style="text-align:right" | 46
| rowspan=3 style="text-align:right" | 44
| rowspan=3|89.95737(43)#
| rowspan=3|10# ms
[>400 ns]
| β+?
| 90Rh
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β+, p?
| 89Ru
|-
| 2p?
| 88Ru
|-id=Palladium-91
| rowspan=2|91Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 45
| rowspan=2|90.95044(45)#
| rowspan=2|32(3) ms
| β+ (96.9%)
| 91Rh
| rowspan=2|7/2+#
| rowspan=2|
| rowspan=2|
|-
| β+, p (3.1%)
| 90Ru
|-id=Palladium-92
| rowspan=2|92Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 46
| rowspan=2|91.94119(37)
| rowspan=2|1.06(3) s
| β+ (98.4%)
| 92Rh
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β+, p (1.6%)
| 91Ru
|-id=Palladium-93
| rowspan=2|93Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 47
| rowspan=2|92.93668(40)
| rowspan=2|1.17(2) s
| β+ (92.6%)
| 93Rh
| rowspan=2|(9/2+)
| rowspan=2|
| rowspan=2|
|-
| β+, p (7.4%)
| 92Ru
|-id=Palladium-94
| rowspan=2|94Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 48
| rowspan=2|93.9290363(46)
| rowspan=2|9.1(3) s
| β+ (>99.87%)
| 94Rh
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β+, p (<0.13%)
| 93Ru
|-id=Palladium-94m1
| style="text-indent:1em" | 94m1Pd
| colspan="3" style="text-indent:2em" | 4883.1(4) keV
| 515(1) ns
| IT
| 94Pd
| (14+)
|
|
|-id=Palladium-94m2
| style="text-indent:1em" | 94m2Pd
| colspan="3" style="text-indent:2em" | 7209.8(8) keV
| 206(18) ns
| IT
| 94Pd
| (19−)
|
|
|-id=Palladium-95
| rowspan=2|95Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 49
| rowspan=2|94.9248885(33)
| rowspan=2|7.4(4) s
| β+ (99.77%)
| 95Rh
| rowspan=2|9/2+#
| rowspan=2|
| rowspan=2|
|-
| β+, p (0.23%)
| 94Ru
|-id=Palladium-95m
| rowspan=3 style="text-indent:1em" | 95mPd
| rowspan=3 colspan="3" style="text-indent:2em" | 1875.13(14) keV
| rowspan=3|13.3(2) s
| β+ (88%)
| 95Rh
| rowspan=3|(21/2+)
| rowspan=3|
| rowspan=3|
|-
| IT (11%)
| 95Pd
|-
| β+, p (0.71%)
| 94Ru
|-id=Palladium-96
| 96Pd
| style="text-align:right" | 46
| style="text-align:right" | 50
| 95.9182137(45)
| 122(2) s
| β+
| 96Rh
| 0+
|
|
|-id=Palladium-96m
| style="text-indent:1em" | 96mPd
| colspan="3" style="text-indent:2em" | 2530.57(23) keV
| 1.804(7) μs
| IT
| 96Pd
| 8+#
|
|
|-id=Palladium-97
| 97Pd
| style="text-align:right" | 46
| style="text-align:right" | 51
| 96.9164720(52)
| 3.10(9) min
| β+
| 97Rh
| 5/2+#
|
|
|-id=Palladium-98
| 98Pd
| style="text-align:right" | 46
| style="text-align:right" | 52
| 97.9126983(51)
| 17.7(4) min
| β+
| 98Rh
| 0+
|
|
|-id=Palladium-99
| 99Pd
| style="text-align:right" | 46
| style="text-align:right" | 53
| 98.9117731(55)
| 21.4(2) min
| β+
| 99Rh
| (5/2)+
|
|
|-id=Palladium-100
| 100Pd
| style="text-align:right" | 46
| style="text-align:right" | 54
| 99.908520(19)
| 3.63(9) d
| EC
| 100Rh
| 0+
|
|
|-id=Palladium-101
| 101Pd
| style="text-align:right" | 46
| style="text-align:right" | 55
| 100.9082848(49)
| 8.47(6) h
| β+
| 101Rh
| 5/2+
|
|
|-id=Palladium-102
| 102Pd
| style="text-align:right" | 46
| style="text-align:right" | 56
| 101.90563229(45)
| colspan=3 align=center|Observationally StableBelieved to decay by β+β+ to 102Ru with a half-life over 7.6×1018 y
| 0+
| 0.0102(1)
|
|-
| 103Pd
| style="text-align:right" | 46
| style="text-align:right" | 57
| 102.90611107(94)
| 16.991(19) d
| EC
| 103Rh
| 5/2+
|
|
|-id=Palladium-104
| 104Pd
| style="text-align:right" | 46
| style="text-align:right" | 58
| 103.9040304(14)
| colspan=3 align=center|Stable
| 0+
| 0.1114(8)
|
|-id=Palladium-105
| style="text-align:right" | 46
| style="text-align:right" | 59
| 104.9050795(12)
| colspan=3 align=center|Stable
| 5/2+
| 0.2233(8)
|
|-id=Palladium-105m
| style="text-indent:1em" | 105mPd
| colspan="3" style="text-indent:2em" | 489.1(3) keV
| 35.5(5) μs
| IT
| 105Pd
| 11/2−
|
|
|-id=Palladium-106
| style="text-align:right" | 46
| style="text-align:right" | 60
| 105.9034803(12)
| colspan=3 align=center|Stable
| 0+
| 0.2733(3)
|
|-
| 107PdLong-lived fission product
| style="text-align:right" | 46
| style="text-align:right" | 61
| 106.9051281(13)
| 6.5(3)×106 y
| β−
| 107Ag
| 5/2+
| traceCosmogenic nuclide, also found as nuclear contamination
|
|-id=Palladium-107m1
| style="text-indent:1em" | 107m1Pd
| colspan="3" style="text-indent:2em" | 115.74(12) keV
| 0.85(10) μs
| IT
| 107Pd
| 1/2+
|
|
|-id=Palladium-107m2
| style="text-indent:1em" | 107m2Pd
| colspan="3" style="text-indent:2em" | 214.6(3) keV
| 21.3(5) s
| IT
| 107Pd
| 11/2−
|
|
|-id=Palladium-108
| style="text-align:right" | 46
| style="text-align:right" | 62
| 107.9038918(12)
| colspan=3 align=center|Stable
| 0+
| 0.2646(9)
|
|-id=Palladium-109
| style="text-align:right" | 46
| style="text-align:right" | 63
| 108.9059506(12)
| 13.59(12) h
| β−
| 109Ag
| 5/2+
|
|
|-id=Palladium-109m1
| style="text-indent:1em" | 109m1Pd
| colspan="3" style="text-indent:2em" | 113.4000(14) keV
| 380(50) ns
| IT
| 109Pd
| 1/2+
|
|
|-id=Palladium-109m2
| style="text-indent:1em" | 109m2Pd
| colspan="3" style="text-indent:2em" | 188.9903(10) keV
| 4.703(9) min
| IT
| 109Pd
| 11/2−
|
|
|-id=Palladium-110
| style="text-align:right" | 46
| style="text-align:right" | 64
| 109.90517288(66)
| colspan=3 align=center|Observationally StableBelieved to decay by β−β− to 110Cd with a half-life over 2.9×1020 years
| 0+
| 0.1172(9)
|
|-id=Palladium-111
| 111Pd
| style="text-align:right" | 46
| style="text-align:right" | 65
| 110.90769036(79)
| 23.56(9) min
| β−
| 111Ag
| 5/2+
|
|
|-id=Palladium-111m
| rowspan=2 style="text-indent:1em" | 111mPd
| rowspan=2 colspan="3" style="text-indent:2em" | 172.18(8) keV
| rowspan=2|5.563(13) h
| IT (76.8%)
| 111Pd
| rowspan=2|11/2−
| rowspan=2|
| rowspan=2|
|-
| β− (23.2%)
| 111Ag
|-id=Palladium-112
| 112Pd
| style="text-align:right" | 46
| style="text-align:right" | 66
| 111.9073306(70)
| 21.04(17) h
| β−
| 112Ag
| 0+
|
|
|-id=Palladium-113
| 113Pd
| style="text-align:right" | 46
| style="text-align:right" | 67
| 112.9102619(75)
| 93(5) s
| β−
| 113Ag
| (5/2+)
|
|
|-id=Palladium-113m
| style="text-indent:1em" | 113mPd
| colspan="3" style="text-indent:2em" | 81.1(3) keV
| 0.3(1) s
| IT
| 113Pd
| (9/2−)
|
|
|-id=Palladium-114
| 114Pd
| style="text-align:right" | 46
| style="text-align:right" | 68
| 113.9103694(75)
| 2.42(6) min
| β−
| 114Ag
| 0+
|
|
|-id=Palladium-115
| 115Pd
| style="text-align:right" | 46
| style="text-align:right" | 69
| 25(2) s
| β−
| 115Ag
| (1/2)+
|
|
|-id=Palladium-115m
| rowspan=2 style="text-indent:1em" | 115mPd
| rowspan=2 colspan="3" style="text-indent:2em" | 86.8(29) keV
| rowspan=2|50(3) s
| β− (92.0%)
| 115Ag
| rowspan=2|(7/2−)
| rowspan=2|
| rowspan=2|
|-
| IT (8.0%)
| 115Pd
|-id=Palladium-116
| 116Pd
| style="text-align:right" | 46
| style="text-align:right" | 70
| 115.9142979(77)
| 11.8(4) s
| β−
| 116Ag
| 0+
|
|
|-id=Palladium-117
| 117Pd
| style="text-align:right" | 46
| style="text-align:right" | 71
| 116.9179556(78)
| 4.3(3) s
| β−
| 117Ag
| (3/2+)
|
|
|-id=Palladium-117m
| style="text-indent:1em" | 117mPd
| colspan="3" style="text-indent:2em" | 203.3(3) keV
| 19.1(7) ms
| IT
| 117Pd
| (9/2−)
|
|
|-id=Palladium-118
| 118Pd
| style="text-align:right" | 46
| style="text-align:right" | 72
| 117.9190673(27)
| 1.9(1) s
| β−
| 118Ag
| 0+
|
|
|-id=Palladium-119
| rowspan=2|119Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 73
| rowspan=2|0.88(2) s
| β−
| 119Ag
| rowspan=2|
| rowspan=2|
|-
| β−, n?
| 118Ag
|-id=Palladium-119m
| style="text-indent:1em" | 119mPd
| colspan="3" style="text-indent:2em" | 199.1(30) keV
| 0.85(1) s
| IT
| 119Pd
|
|
|-id=Palladium-120
| rowspan=2|120Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 74
| rowspan=2|119.9245517(25)
| rowspan=2|492(33) ms
| β− (>99.3%)
| 120Ag
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (<0.7%)
| 119Ag
|-id=Palladium-121
| rowspan=2|121Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 75
| rowspan=2|290(1) ms
| β− (>99.2%)
| 121Ag
| rowspan=2|3/2+#
| rowspan=2|
| rowspan=2|
|-
| β−, n (<0.8%)
| 120Ag
|-id=Palladium-121m1
| style="text-indent:1em" | 121m1Pd
| colspan="3" style="text-indent:2em" | 135.5(5) keV
| 460(90) ns
| IT
| 121Pd
| 7/2+#
|
|
|-id=Palladium-121m2
| style="text-indent:1em" | 121m2Pd
| colspan="3" style="text-indent:2em" | 160(14) keV
| 460(90) ns
| IT
| 121Pd
| 11/2−#
|
|
|-id=Palladium-122
| rowspan=2|122Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 76
| rowspan=2|121.930632(21)
| rowspan=2|193(5) ms
| β−
| 122Ag
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (<2.5%)
| 121Ag
|-id=Palladium-123
| rowspan=2|123Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 77
| rowspan=2|122.93513(85)
| rowspan=2|108(1) ms
| β− (90%)
| 123Ag
| rowspan=2|3/2+#
| rowspan=2|
| rowspan=2|
|-
| β−, n (10%)
| 122Ag
|-id=Palladium-123m
| rowspan=2 style="text-indent:1em" | 123mPd
| rowspan=2 colspan="3" style="text-indent:2em" | 100(50)# keV
| rowspan=2|100# ms
| β−
| 123Ag
| rowspan=2|11/2−#
| rowspan=2|
| rowspan=2|
|-
| IT?
| 123Pd
|-id=Palladium-124
| rowspan=2|124Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 78
| rowspan=2|123.93731(32)#
| rowspan=2|88(15) ms
| β− (83%)
| 124Ag
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (17%)
| 123Ag
|-id=Palladium-124m
| style="text-indent:1em" | 124mPd
| colspan="3" style="text-indent:2em" | 1000(800)# keV
| >20 μs
| IT
| 124Pd
| 11/2−#
|
|
|-id=Palladium-125
| rowspan=2|125Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 79
| rowspan=2|124.94207(43)#
| rowspan=2|60(6) ms
| β− (88%)
| 125Ag
| rowspan=2|3/2+#
| rowspan=2|
| rowspan=2|
|-
| β−, n (12%)
| 124Ag
|-id=Palladium-125m1
| rowspan=2 style="text-indent:1em" | 125m1Pd
| rowspan=2 colspan="3" style="text-indent:2em" | 100(50)# keV
| rowspan=2|50# ms
| β−
| 125Ag
| rowspan=2|11/2−#
| rowspan=2|
| rowspan=2|
|-
| IT?
| 125Pd
|-id=Palladium-125m2
| style="text-indent:1em" | 125m2Pd
| colspan="3" style="text-indent:2em" | 1805.23(18) keV
| 144(4) ns
| IT
| 125Pd
| (23/2+)
|
|
|-id=Palladium-126
| rowspan=2|126Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 80
| rowspan=2|125.94440(43)#
| rowspan=2|48.6(8) ms
| β− (78%)
| 126Ag
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (22%)
| 125Ag
|-id=Palladium-126m1
| style="text-indent:1em" | 126m1Pd
| colspan="3" style="text-indent:2em" | 2023.5(7) keV
| 330(40) ns
| IT
| 126Pd
| (5−)
|
|
|-id=Palladium-126m2
| style="text-indent:1em" | 126m2Pd
| colspan="3" style="text-indent:2em" | 2109.7(9) keV
| 440(30) ns
| IT
| 126Pd
| (7−)
|
|
|-id=Palladium-126m3
| rowspan=2 style="text-indent:1em" | 126m3Pd
| rowspan=2 colspan="3" style="text-indent:2em" | 2406.0(10) keV
| rowspan=2|23.0(8) ms
| β− (72%)
| 126Ag
| rowspan=2|(10+)
| rowspan=2|
| rowspan=2|
|-
| IT (28%)
| 126Pd
|-id=Palladium-127
| rowspan=3|127Pd
| rowspan=3 style="text-align:right" | 46
| rowspan=3 style="text-align:right" | 81
| rowspan=3|126.94931(54)#
| rowspan=3|38(2) ms
| β− (>81%)
| 127Ag
| rowspan=3|11/2−#
| rowspan=3|
| rowspan=3|
|-
| β−, n (<19%)
| 126Ag
|-
| β−, 2n?
| 125Ag
|-id=Palladium-127m
| style="text-indent:1em" | 127mPd
| colspan="3" style="text-indent:2em" | 1717.91(23) keV
| 39(6) μs
| IT
| 127Pd
| (19/2+)
|
|
|-id=Palladium-128
| rowspan=2|128Pd
| rowspan=2 style="text-align:right" | 46
| rowspan=2 style="text-align:right" | 82
| rowspan=2|127.95235(54)#
| rowspan=2|35(3) ms
| β−
| 128Ag
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n?
| 127Ag
|-id=Palladium-128m
| style="text-indent:1em" | 128mPd
| colspan="3" style="text-indent:2em" | 2151.0(10) keV
| 5.8(8) μs
| IT
| 128Pd
| (8+)
|
|
|-id=Palladium-129
| rowspan=3|129Pd
| rowspan=3 style="text-align:right" | 46
| rowspan=3 style="text-align:right" | 83
| rowspan=3|128.95933(64)#
| rowspan=3|31(7) ms
| β−
| 129Ag
| rowspan=3|7/2−#
| rowspan=3|
| rowspan=3|
|-
| β−, n?
| 128Ag
|-
| β−, 2n?
| 127Ag
|-id=Palladium-130
| rowspan=3|130Pd
| rowspan=3 style="text-align:right" | 46
| rowspan=3 style="text-align:right" | 84
| rowspan=3|129.96486(32)#
| rowspan=3|27# ms
[>550 ns]
| β−
| 130Ag
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−, n?
| 129Ag
|-
| β−, 2n?
| 128Ag
|-id=Palladium-131
| rowspan=3|131Pd
| rowspan=3 style="text-align:right" | 46
| rowspan=3 style="text-align:right" | 85
| rowspan=3|130.97237(32)#
| rowspan=3|20# ms
[>550 ns]
| β−
| 131Ag
| rowspan=3|7/2−#
| rowspan=3|
| rowspan=3|
|-
| β−, n?
| 130Ag
|-
| β−, 2n?
| 129Ag
{{Isotopes table/footer}}
Palladium-103
Palladium-103 is a radioisotope of the element palladium that has uses in brachytherapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99{{cite web |last = Winter |first = Mark |title = Isotopes of palladium |work = WebElements |publisher = The University of Sheffield and WebElements Ltd, UK |url = http://www.webelements.com/palladium/isotopes.html| access-date = 4 March 2013}} days and decays by electron capture to an excited state of rhodium-103, which undergoes internal conversion to eject an electron. The resulting electron vacancy leads to emission of characteristic X-rays with 20–23 keV of energy.
Palladium-107
{{Long-lived fission products}}
Palladium-107 is the second-longest lived (half-life of 6.5 million years) and least radioactive (decay energy only 33 keV, specific activity 5{{e|-5}} Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.
Its yield from thermal neutron fission of uranium-235 is 0.14% per fission,{{cite journal |title=Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl |first1=A. |last1=Weller |first2=T. |last2=Ramaker |first3=F. |last3=Stäger |first4=T. |last4=Blenke |first5=M. |last5=Raiwa |first6=I. |last6=Chyzhevskyi |first7=S. |last7=Kirieiev|first8=S. |last8=Dubchak |first9=G. |last9=Steinhauser |journal=Environmental Science & Technology Letters |date=2021 |volume=8 |issue=8 |pages=656–661 |doi=10.1021/acs.estlett.1c00420 |bibcode=2021EnSTL...8..656W |url=https://www.researchgate.net/publication/352972522}} only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.2%. Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.
One source{{cite journal |author=R. P. Bush |title=Recovery of Platinum Group Metals from High Level Radioactive Waste |journal=Platinum Metals Review |year=1991 |volume=35 |issue=4 |pages=202–208 |doi=10.1595/003214091X354202208 |url=http://www.platinummetalsreview.com/pdf/pmr-v35-i4-202-208.pdf |access-date=2011-04-02 |archive-date=2015-09-24 |archive-url=https://web.archive.org/web/20150924074421/http://www.platinummetalsreview.com/pdf/pmr-v35-i4-202-208.pdf |url-status=dead }} estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).
Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.
References
- [http://www.wipo.int/ipdl/IPDL-CIMAGES/view/pct/getbykey5?KEY=00/08651.000217&ELEMENT_SET=BASICHTML Patent application for Palladium-103 implantable radiation-delivery device]{{Dead link|date=January 2020 |bot=InternetArchiveBot |fix-attempted=yes }} (accessed 12/7/05)
{{Reflist}}
- Isotope masses from:
- {{NUBASE 2003}}
- Isotopic compositions and standard atomic masses from:
- {{CIAAW2003}}
- {{CIAAW 2005}}
- Half-life, spin, and isomer data selected from the following sources.
- {{NUBASE 2003}}
- {{NNDC}}
- {{CRC85|chapter=11}}
{{Navbox element isotopes}}