Isotopes of titanium

{{Short description|none}}

{{Infobox titanium isotopes}}

Naturally occurring titanium (22Ti) is composed of five stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds, and the majority of these have half-lives that are less than half a second.{{cite web |url=http://environmentalchemistry.com/yogi/periodic/Ti-pg2.html#Nuclides |title=Periodic Table of Elements: Ti - Titanium |access-date=2006-12-26 |last=Barbalace |first=Kenneth L. |year=2006}}

The isotopes of titanium range in atomic mass from 39.00 Da (39Ti) to 64.00 Da (64Ti). The primary decay mode for isotopes lighter than the stable isotopes (lighter than 46Ti) is β+ and the primary mode for the heavier ones (heavier than 50Ti) is β; their respective decay products are scandium isotopes and the primary products after are vanadium isotopes.

Two stable isotopes of titanium (47Ti and 49Ti) have non-zero nuclear spin of 5/2− and 7/2−, respectively, and thus are NMR-active.{{cite book |doi=10.1016/bs.arnmr.2015.10.001 |title=Reviewing 47/49Ti Solid-State NMR Spectroscopy |series=Annual Reports on NMR Spectroscopy |date=2016 |last1=Lucier |first1=Bryan E.G. |last2=Huang |first2=Yining |volume=88 |pages=1–78 |isbn=978-0-12-804713-2 }}

List of isotopes

{{Anchor|Titanium-37|Titanium-38|Titanium-65}}

{{Isotopes table

|symbol=Ti

|refs=NUBASE2020, AME2020 II

|notes=m, unc(), mass#, hl#, spin(), spin#, daughter-st, n, p, EC

}}

|-id=Titanium-39

| rowspan=3|39Ti

| rowspan=3 style="text-align:right" | 22

| rowspan=3 style="text-align:right" | 17

| rowspan=3|39.00268(22)#

| rowspan=3|28.5(9) ms

| β+, p (93.7%)

| 38Ca

| rowspan=3|3/2+#

| rowspan=3|

| rowspan=3|

|-

| β+ (~6.3%)

| 39Sc

|-

| β+, 2p (?%)

| 37K

|-id=Titanium-40

| rowspan=2|40Ti

| rowspan=2 style="text-align:right" | 22

| rowspan=2 style="text-align:right" | 18

| rowspan=2|39.990345(73)

| rowspan=2|52.4(3) ms

| β+, p (95.8%)

| 39Ca

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β+ (4.2%)

| 40Sc

|-id=Titanium-41

| rowspan=2|41Ti

| rowspan=2 style="text-align:right" | 22

| rowspan=2 style="text-align:right" | 19

| rowspan=2|40.983148(30)

| rowspan=2|81.9(5) ms

| β+, p (91.1%)

| 40Ca

| rowspan=2|3/2+

| rowspan=2|

| rowspan=2|

|-

| β+ (8.9%)

| 41Sc

|-id=Titanium-42

| 42Ti

| style="text-align:right" | 22

| style="text-align:right" | 20

| 41.97304937(29)

| 208.3(4) ms

| β+

| 42Sc

| 0+

|

|

|-id=Titanium-43

| 43Ti

| style="text-align:right" | 22

| style="text-align:right" | 21

| 42.9685284(61)

| 509(5) ms

| β+

| 43Sc

| 7/2−

|

|

|-id=Titanium-43m1

| style="text-indent:1em" | 43m1Ti

| colspan="3" style="text-indent:2em" | 313.0(10) keV

| 11.9(3) μs

| IT

| 43Ti

| (3/2+)

|

|

|-id=Titanium-43m2

| style="text-indent:1em" | 43m2Ti

| colspan="3" style="text-indent:2em" | 3066.4(10) keV

| 556(6) ns

| IT

| 43Ti

| (19/2−)

|

|

|-

| 44Ti

| style="text-align:right" | 22

| style="text-align:right" | 22

| 43.95968994(75)

| 59.1(3) y

| EC

| 44Sc

| 0+

|

|

|-id=Titanium-45

| 45Ti

| style="text-align:right" | 22

| style="text-align:right" | 23

| 44.95812076(90)

| 184.8(5) min

| β+

| 45Sc

| 7/2−

|

|

|-id=Titanium-45m

| style="text-indent:1em" | 45mTi

| colspan="3" style="text-indent:2em" | 36.53(15) keV

| 3.0(2) μs

| IT

| 45Ti

| 3/2−

|

|

|-id=Titanium-46

| 46Ti

| style="text-align:right" | 22

| style="text-align:right" | 24

| 45.952626356(97)

| colspan=3 align=center|Stable

| 0+

| 0.0825(3)

|

|-id=Titanium-47

| 47Ti

| style="text-align:right" | 22

| style="text-align:right" | 25

| 46.951757491(85)

| colspan=3 align=center|Stable

| 5/2−

| 0.0744(2)

|

|-id=Titanium-48

| 48Ti

| style="text-align:right" | 22

| style="text-align:right" | 26

| 47.947940677(79)

| colspan=3 align=center|Stable

| 0+

| 0.7372(3)

|

|-id=Titanium-49

| 49Ti

| style="text-align:right" | 22

| style="text-align:right" | 27

| 48.947864391(84)

| colspan=3 align=center|Stable

| 7/2−

| 0.0541(2)

|

|-id=Titanium-50

| 50Ti

| style="text-align:right" | 22

| style="text-align:right" | 28

| 49.944785622(88)

| colspan=3 align=center|Stable

| 0+

| 0.0518(2)

|

|-id=Titanium-51

| 51Ti

| style="text-align:right" | 22

| style="text-align:right" | 29

| 50.94660947(52)

| 5.76(1) min

| β

| 51V

| 3/2−

|

|

|-id=Titanium-52

| 52Ti

| style="text-align:right" | 22

| style="text-align:right" | 30

| 51.9468835(29)

| 1.7(1) min

| β

| 52V

| 0+

|

|

|-id=Titanium-53

| 53Ti

| style="text-align:right" | 22

| style="text-align:right" | 31

| 52.9496707(31)

| 32.7(9) s

| β

| 53V

| (3/2)−

|

|

|-id=Titanium-54

| 54Ti

| style="text-align:right" | 22

| style="text-align:right" | 32

| 53.950892(17)

| 2.1(10) s

| β

| 54V

| 0+

|

|

|-id=Titanium-55

| 55Ti

| style="text-align:right" | 22

| style="text-align:right" | 33

| 54.955091(31)

| 1.3(1) s

| β

| 55V

| (1/2)−

|

|

|-id=Titanium-56

| 56Ti

| style="text-align:right" | 22

| style="text-align:right" | 34

| 55.95768(11)

| 200(5) ms

| β

| 56V

| 0+

|

|

|-id=Titanium-57

| 57Ti

| style="text-align:right" | 22

| style="text-align:right" | 35

| 56.96307(22)

| 95(8) ms

| β

| 57V

| 5/2−#

|

|

|-id=Titanium-58

| 58Ti

| style="text-align:right" | 22

| style="text-align:right" | 36

| 57.96681(20)

| 55(6) ms

| β

| 58V

| 0+

|

|

|-id=Titanium-59

| 59Ti

| style="text-align:right" | 22

| style="text-align:right" | 37

| 58.97222(32)#

| 28.5(19) ms

| β

| 59V

| 5/2−#

|

|

|-id=Titanium-59m

| style="text-indent:1em" | 59mTi

| colspan="3" style="text-indent:2em" | 108.5(5) keV

| 615(11) ns

| IT

| 59Ti

| 1/2−#

|

|

|-id=Titanium-60

| 60Ti

| style="text-align:right" | 22

| style="text-align:right" | 38

| 59.97628(26)

| 22.2(16) ms

| β

| 60V

| 0+

|

|

|-id=Titanium-61

| 61Ti

| style="text-align:right" | 22

| style="text-align:right" | 39

| 60.98243(32)#

| 15(4) ms

| β

| 61V

| 1/2−#

|

|

|-id=Titanium-61m1

| style="text-indent:1em" | 61m1Ti

| colspan="3" style="text-indent:2em" | 125.0(5) keV

| 200(28) ns

| IT

| 61Ti

| 5/2−#

|

|

|-id=Titanium-61m2

| style="text-indent:1em" | 61m2Ti

| colspan="3" style="text-indent:2em" | 700.1(7) keV

| 354(69) ns

| IT

| 61Ti

| 9/2+#

|

|

|-id=Titanium-62

| 62Ti

| style="text-align:right" | 22

| style="text-align:right" | 40

| 61.98690(43)#

| 9# ms
[>620 ns]

|

|

| 0+

|

|

|-id=Titanium-63

| 63Ti

| style="text-align:right" | 22

| style="text-align:right" | 41

| 62.99371(54)#

| 10# ms
[>620 ns]

|

|

| 1/2−#

|

|

|-id=Titanium-64

| 64Ti

| style="text-align:right" | 22

| style="text-align:right" | 42

| 63.99841(64)#

| 5# ms
[>620 ns]

|

|

| 0+

|

|

{{Isotopes table/footer}}

Titanium-44

Titanium-44 (44Ti) is a radioactive isotope of titanium that undergoes electron capture to an excited state of scandium-44 with a half-life of 60 years, before the ground state of 44Sc and ultimately 44Ca are populated.{{cite journal|last1=Motizuki|first1=Y.|last2=Kumagai|first2=S.|title=Radioactivity of the key isotope 44Ti in SN 1987A|date=2004|journal=AIP Conference Proceedings|volume=704|issue=1|pages=369–374|doi=10.1063/1.1737130|arxiv=astro-ph/0312620 |bibcode=2004AIPC..704..369M }} Because titanium-44 can only decay through electron capture, its half-life increases with its ionization state and it becomes stable in its fully ionized state (that is, having a charge of +22).{{cite journal|last1=Mochizuki|first1=Y.|last2=Takahashi|first2=K.|last3=Janka|first3=H.-Th. |last4=Hillebrandt|first4=W.|last5=Diehl|first5=R.|date=2008|title=Titanium-44: Its effective decay rate in young supernova remnants, and its abundance in Cas A|journal=Astronomy and Astrophysics|volume=346|issue=3|pages=831–842|arxiv=astro-ph/9904378}}

Titanium-44 is produced in relative abundance in the alpha process in stellar nucleosynthesis and the early stages of supernova explosions.{{cite report |last1=Fryer |first1=C. |last2=Dimonte |first2=G. |last3=Ellinger |first3=E. |last4=Hungerford |first4=A. |last5=Kares |first5=B. |last6=Magkotsios |first6=G. |last7=Rockefeller |first7=G. |last8=Timmes |first8=F. |last9=Woodward |first9=P. |last10=Young |first10=P. |title=Nucleosynthesis in the Universe, Understanding 44Ti |date=2011 |publisher=Los Alamos National Laboratory |work=ADTSC Science Highlights |pages=42–43 |url=https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2011/docs/2CosmoPDFs/fryer.pdf}} It is produced when calcium-40 fuses with an alpha particle (helium-4 nucleus) in a star's high-temperature environment; the resulting 44Ti nucleus can then fuse with another alpha particle to form chromium-48. The age of supernovae may be determined through measurements of gamma-ray emissions from titanium-44 and its abundance. It was observed in the Cassiopeia A supernova remnant and SN 1987A at a relatively high concentration, a consequence of delayed decay resulting from ionizing conditions.

See also

References

{{reflist}}

  • Isotope masses from:
  • {{NUBASE 2003}}
  • Isotopic compositions and standard atomic masses from:
  • {{CIAAW2003}}
  • {{CIAAW 2005}}
  • Half-life, spin, and isomer data selected from the following sources.
  • {{NUBASE 2003}}
  • {{NNDC}}
  • {{CRC85|chapter=11}}

{{Navbox element isotopes}}

Category:Titanium

Titaniun