Isotopes of titanium#Titanium-45
{{Short description|none}}
{{Infobox titanium isotopes}}
Naturally occurring titanium (22Ti) is composed of five stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds, and the majority of these have half-lives that are less than half a second.{{cite web |url=http://environmentalchemistry.com/yogi/periodic/Ti-pg2.html#Nuclides |title=Periodic Table of Elements: Ti - Titanium |access-date=2006-12-26 |last=Barbalace |first=Kenneth L. |year=2006}}
The isotopes of titanium range in atomic mass from 39.00 u (39Ti) to 64.00 u (64Ti). The primary decay mode for isotopes lighter than the stable isotopes (lighter than 46Ti) is β+ and the primary mode for the heavier ones (heavier than 50Ti) is β−; their respective decay products are scandium isotopes and the primary products after are vanadium isotopes.
Two stable isotopes of titanium (47Ti and 49Ti) have non-zero nuclear spin of 5/2- and 7/2-, respectively, and thus are NMR-active.{{cite book |doi=10.1016/bs.arnmr.2015.10.001 |title=Reviewing 47/49Ti Solid-State NMR Spectroscopy |series=Annual Reports on NMR Spectroscopy |date=2016 |last1=Lucier |first1=Bryan E.G. |last2=Huang |first2=Yining |volume=88 |pages=1–78 |isbn=978-0-12-804713-2 }}
List of isotopes
{{Anchor|Titanium-37|Titanium-38|Titanium-65}}
{{Isotopes table
|symbol=Ti
|refs=NUBASE2020, AME2020 II
|notes=m, unc(), mass#, hl#, spin(), spin#, daughter-st, n, p, EC
}}
|-id=Titanium-39
| rowspan=3|39Ti
| rowspan=3 style="text-align:right" | 22
| rowspan=3 style="text-align:right" | 17
| rowspan=3|39.00268(22)#
| rowspan=3|28.5(9) ms
| 38Ca
| rowspan=3|3/2+#
| rowspan=3|
| rowspan=3|
|-
| β+ (~6.3%)
| 39Sc
|-
| β+, 2p (?%)
| 37K
|-id=Titanium-40
| rowspan=2|40Ti
| rowspan=2 style="text-align:right" | 22
| rowspan=2 style="text-align:right" | 18
| rowspan=2|39.990345(73)
| rowspan=2|52.4(3) ms
| β+, p (95.8%)
| 39Ca
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β+ (4.2%)
| 40Sc
|-id=Titanium-41
| rowspan=2|41Ti
| rowspan=2 style="text-align:right" | 22
| rowspan=2 style="text-align:right" | 19
| rowspan=2|40.983148(30)
| rowspan=2|81.9(5) ms
| β+, p (91.1%)
| 40Ca
| rowspan=2|3/2+
| rowspan=2|
| rowspan=2|
|-
| β+ (8.9%)
| 41Sc
|-id=Titanium-42
| 42Ti
| style="text-align:right" | 22
| style="text-align:right" | 20
| 41.97304937(29)
| 208.3(4) ms
| β+
| 42Sc
| 0+
|
|
|-id=Titanium-43
| 43Ti
| style="text-align:right" | 22
| style="text-align:right" | 21
| 42.9685284(61)
| 509(5) ms
| β+
| 43Sc
| 7/2−
|
|
|-id=Titanium-43m1
| style="text-indent:1em" | 43m1Ti
| colspan="3" style="text-indent:2em" | 313.0(10) keV
| 11.9(3) μs
| IT
| 43Ti
| (3/2+)
|
|
|-id=Titanium-43m2
| style="text-indent:1em" | 43m2Ti
| colspan="3" style="text-indent:2em" | 3066.4(10) keV
| 556(6) ns
| IT
| 43Ti
| (19/2−)
|
|
|-
| 44Ti
| style="text-align:right" | 22
| style="text-align:right" | 22
| 43.95968994(75)
| 59.1(3) y
| EC
| 44Sc
| 0+
|
|
|-id=Titanium-45
| 45Ti
| style="text-align:right" | 22
| style="text-align:right" | 23
| 44.95812076(90)
| 184.8(5) min
| β+
| 45Sc
| 7/2−
|
|
|-id=Titanium-45m
| style="text-indent:1em" | 45mTi
| colspan="3" style="text-indent:2em" | 36.53(15) keV
| 3.0(2) μs
| IT
| 45Ti
| 3/2−
|
|
|-id=Titanium-46
| 46Ti
| style="text-align:right" | 22
| style="text-align:right" | 24
| 45.952626356(97)
| colspan=3 align=center|Stable
| 0+
| 0.0825(3)
|
|-id=Titanium-47
| 47Ti
| style="text-align:right" | 22
| style="text-align:right" | 25
| 46.951757491(85)
| colspan=3 align=center|Stable
| 5/2−
| 0.0744(2)
|
|-id=Titanium-48
| 48Ti
| style="text-align:right" | 22
| style="text-align:right" | 26
| 47.947940677(79)
| colspan=3 align=center|Stable
| 0+
| 0.7372(3)
|
|-id=Titanium-49
| 49Ti
| style="text-align:right" | 22
| style="text-align:right" | 27
| 48.947864391(84)
| colspan=3 align=center|Stable
| 7/2−
| 0.0541(2)
|
|-id=Titanium-50
| 50Ti
| style="text-align:right" | 22
| style="text-align:right" | 28
| 49.944785622(88)
| colspan=3 align=center|Stable
| 0+
| 0.0518(2)
|
|-id=Titanium-51
| 51Ti
| style="text-align:right" | 22
| style="text-align:right" | 29
| 50.94660947(52)
| 5.76(1) min
| β−
| 51V
| 3/2−
|
|
|-id=Titanium-52
| 52Ti
| style="text-align:right" | 22
| style="text-align:right" | 30
| 51.9468835(29)
| 1.7(1) min
| β−
| 52V
| 0+
|
|
|-id=Titanium-53
| 53Ti
| style="text-align:right" | 22
| style="text-align:right" | 31
| 52.9496707(31)
| 32.7(9) s
| β−
| 53V
| (3/2)−
|
|
|-id=Titanium-54
| 54Ti
| style="text-align:right" | 22
| style="text-align:right" | 32
| 53.950892(17)
| 2.1(10) s
| β−
| 54V
| 0+
|
|
|-id=Titanium-55
| 55Ti
| style="text-align:right" | 22
| style="text-align:right" | 33
| 54.955091(31)
| 1.3(1) s
| β−
| 55V
| (1/2)−
|
|
|-id=Titanium-56
| 56Ti
| style="text-align:right" | 22
| style="text-align:right" | 34
| 55.95768(11)
| 200(5) ms
| β−
| 56V
| 0+
|
|
|-id=Titanium-57
| 57Ti
| style="text-align:right" | 22
| style="text-align:right" | 35
| 56.96307(22)
| 95(8) ms
| β−
| 57V
| 5/2−#
|
|
|-id=Titanium-58
| 58Ti
| style="text-align:right" | 22
| style="text-align:right" | 36
| 57.96681(20)
| 55(6) ms
| β−
| 58V
| 0+
|
|
|-id=Titanium-59
| 59Ti
| style="text-align:right" | 22
| style="text-align:right" | 37
| 58.97222(32)#
| 28.5(19) ms
| β−
| 59V
| 5/2−#
|
|
|-id=Titanium-59m
| style="text-indent:1em" | 59mTi
| colspan="3" style="text-indent:2em" | 108.5(5) keV
| 615(11) ns
| IT
| 59Ti
| 1/2−#
|
|
|-id=Titanium-60
| 60Ti
| style="text-align:right" | 22
| style="text-align:right" | 38
| 59.97628(26)
| 22.2(16) ms
| β−
| 60V
| 0+
|
|
|-id=Titanium-61
| 61Ti
| style="text-align:right" | 22
| style="text-align:right" | 39
| 60.98243(32)#
| 15(4) ms
| β−
| 61V
| 1/2−#
|
|
|-id=Titanium-61m1
| style="text-indent:1em" | 61m1Ti
| colspan="3" style="text-indent:2em" | 125.0(5) keV
| 200(28) ns
| IT
| 61Ti
| 5/2−#
|
|
|-id=Titanium-61m2
| style="text-indent:1em" | 61m2Ti
| colspan="3" style="text-indent:2em" | 700.1(7) keV
| 354(69) ns
| IT
| 61Ti
| 9/2+#
|
|
|-id=Titanium-62
| 62Ti
| style="text-align:right" | 22
| style="text-align:right" | 40
| 61.98690(43)#
| 9# ms
[>620 ns]
|
|
| 0+
|
|
|-id=Titanium-63
| 63Ti
| style="text-align:right" | 22
| style="text-align:right" | 41
| 62.99371(54)#
| 10# ms
[>620 ns]
|
|
| 1/2−#
|
|
|-id=Titanium-64
| 64Ti
| style="text-align:right" | 22
| style="text-align:right" | 42
| 63.99841(64)#
| 5# ms
[>620 ns]
|
|
| 0+
|
|
{{Isotopes table/footer}}
Titanium-44
Titanium-44 (44Ti) is a radioactive isotope of titanium that undergoes electron capture to an excited state of scandium-44 with a half-life of 60 years, before the ground state of 44Sc and ultimately 44Ca are populated.{{cite journal|last1=Motizuki|first1=Y.|last2=Kumagai|first2=S.|title=Radioactivity of the key isotope 44Ti in SN 1987A|date=2004|journal=AIP Conference Proceedings|volume=704|issue=1|pages=369–374|doi=10.1063/1.1737130|arxiv=astro-ph/0312620 |bibcode=2004AIPC..704..369M }} Because titanium-44 can only decay through electron capture, its half-life increases with its ionization state and it becomes stable in its fully ionized state (that is, having a charge of +22).{{cite journal|last1=Mochizuki|first1=Y.|last2=Takahashi|first2=K.|last3=Janka|first3=H.-Th. |last4=Hillebrandt|first4=W.|last5=Diehl|first5=R.|date=2008|title=Titanium-44: Its effective decay rate in young supernova remnants, and its abundance in Cas A|journal=Astronomy and Astrophysics|volume=346|issue=3|pages=831–842|arxiv=astro-ph/9904378}}
Titanium-44 is produced in relative abundance in the alpha process in stellar nucleosynthesis and the early stages of supernova explosions.{{cite report |last1=Fryer |first1=C. |last2=Dimonte |first2=G. |last3=Ellinger |first3=E. |last4=Hungerford |first4=A. |last5=Kares |first5=B. |last6=Magkotsios |first6=G. |last7=Rockefeller |first7=G. |last8=Timmes |first8=F. |last9=Woodward |first9=P. |last10=Young |first10=P. |title=Nucleosynthesis in the Universe, Understanding 44Ti |date=2011 |publisher=Los Alamos National Laboratory |work=ADTSC Science Highlights |pages=42–43 |url=https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2011/docs/2CosmoPDFs/fryer.pdf}} It is produced when calcium-40 fuses with an alpha particle (helium-4 nucleus) in a star's high-temperature environment; the resulting 44Ti nucleus can then fuse with another alpha particle to form chromium-48. The age of supernovae may be determined through measurements of gamma-ray emissions from titanium-44 and its abundance. It was observed in the Cassiopeia A supernova remnant and SN 1987A at a relatively high concentration, a consequence of delayed decay resulting from ionizing conditions.
References
{{reflist}}
- Isotope masses from:
- {{NUBASE 2003}}
- Isotopic compositions and standard atomic masses from:
- {{CIAAW2003}}
- {{CIAAW 2005}}
- Half-life, spin, and isomer data selected from the following sources.
- {{NUBASE 2003}}
- {{NNDC}}
- {{CRC85|chapter=11}}
{{Navbox element isotopes}}