Isotopes of titanium#Titanium-59

{{Short description|none}}

{{Infobox titanium isotopes}}

Naturally occurring titanium (22Ti) is composed of five stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds, and the majority of these have half-lives that are less than half a second.{{cite web |url=http://environmentalchemistry.com/yogi/periodic/Ti-pg2.html#Nuclides |title=Periodic Table of Elements: Ti - Titanium |access-date=2006-12-26 |last=Barbalace |first=Kenneth L. |year=2006}}

The isotopes of titanium range in atomic mass from 39.00 u (39Ti) to 64.00 u (64Ti). The primary decay mode for isotopes lighter than the stable isotopes (lighter than 46Ti) is β+ and the primary mode for the heavier ones (heavier than 50Ti) is β; their respective decay products are scandium isotopes and the primary products after are vanadium isotopes.

Two stable isotopes of titanium (47Ti and 49Ti) have non-zero nuclear spin of 5/2- and 7/2-, respectively, and thus are NMR-active.{{cite book |doi=10.1016/bs.arnmr.2015.10.001 |title=Reviewing 47/49Ti Solid-State NMR Spectroscopy |series=Annual Reports on NMR Spectroscopy |date=2016 |last1=Lucier |first1=Bryan E.G. |last2=Huang |first2=Yining |volume=88 |pages=1–78 |isbn=978-0-12-804713-2 }}

List of isotopes

{{Anchor|Titanium-37|Titanium-38|Titanium-65}}

{{Isotopes table

|symbol=Ti

|refs=NUBASE2020, AME2020 II

|notes=m, unc(), mass#, hl#, spin(), spin#, daughter-st, n, p, EC

}}

|-id=Titanium-39

| rowspan=3|39Ti

| rowspan=3 style="text-align:right" | 22

| rowspan=3 style="text-align:right" | 17

| rowspan=3|39.00268(22)#

| rowspan=3|28.5(9) ms

| β+, p (93.7%)

| 38Ca

| rowspan=3|3/2+#

| rowspan=3|

| rowspan=3|

|-

| β+ (~6.3%)

| 39Sc

|-

| β+, 2p (?%)

| 37K

|-id=Titanium-40

| rowspan=2|40Ti

| rowspan=2 style="text-align:right" | 22

| rowspan=2 style="text-align:right" | 18

| rowspan=2|39.990345(73)

| rowspan=2|52.4(3) ms

| β+, p (95.8%)

| 39Ca

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β+ (4.2%)

| 40Sc

|-id=Titanium-41

| rowspan=2|41Ti

| rowspan=2 style="text-align:right" | 22

| rowspan=2 style="text-align:right" | 19

| rowspan=2|40.983148(30)

| rowspan=2|81.9(5) ms

| β+, p (91.1%)

| 40Ca

| rowspan=2|3/2+

| rowspan=2|

| rowspan=2|

|-

| β+ (8.9%)

| 41Sc

|-id=Titanium-42

| 42Ti

| style="text-align:right" | 22

| style="text-align:right" | 20

| 41.97304937(29)

| 208.3(4) ms

| β+

| 42Sc

| 0+

|

|

|-id=Titanium-43

| 43Ti

| style="text-align:right" | 22

| style="text-align:right" | 21

| 42.9685284(61)

| 509(5) ms

| β+

| 43Sc

| 7/2−

|

|

|-id=Titanium-43m1

| style="text-indent:1em" | 43m1Ti

| colspan="3" style="text-indent:2em" | 313.0(10) keV

| 11.9(3) μs

| IT

| 43Ti

| (3/2+)

|

|

|-id=Titanium-43m2

| style="text-indent:1em" | 43m2Ti

| colspan="3" style="text-indent:2em" | 3066.4(10) keV

| 556(6) ns

| IT

| 43Ti

| (19/2−)

|

|

|-

| 44Ti

| style="text-align:right" | 22

| style="text-align:right" | 22

| 43.95968994(75)

| 59.1(3) y

| EC

| 44Sc

| 0+

|

|

|-id=Titanium-45

| 45Ti

| style="text-align:right" | 22

| style="text-align:right" | 23

| 44.95812076(90)

| 184.8(5) min

| β+

| 45Sc

| 7/2−

|

|

|-id=Titanium-45m

| style="text-indent:1em" | 45mTi

| colspan="3" style="text-indent:2em" | 36.53(15) keV

| 3.0(2) μs

| IT

| 45Ti

| 3/2−

|

|

|-id=Titanium-46

| 46Ti

| style="text-align:right" | 22

| style="text-align:right" | 24

| 45.952626356(97)

| colspan=3 align=center|Stable

| 0+

| 0.0825(3)

|

|-id=Titanium-47

| 47Ti

| style="text-align:right" | 22

| style="text-align:right" | 25

| 46.951757491(85)

| colspan=3 align=center|Stable

| 5/2−

| 0.0744(2)

|

|-id=Titanium-48

| 48Ti

| style="text-align:right" | 22

| style="text-align:right" | 26

| 47.947940677(79)

| colspan=3 align=center|Stable

| 0+

| 0.7372(3)

|

|-id=Titanium-49

| 49Ti

| style="text-align:right" | 22

| style="text-align:right" | 27

| 48.947864391(84)

| colspan=3 align=center|Stable

| 7/2−

| 0.0541(2)

|

|-id=Titanium-50

| 50Ti

| style="text-align:right" | 22

| style="text-align:right" | 28

| 49.944785622(88)

| colspan=3 align=center|Stable

| 0+

| 0.0518(2)

|

|-id=Titanium-51

| 51Ti

| style="text-align:right" | 22

| style="text-align:right" | 29

| 50.94660947(52)

| 5.76(1) min

| β

| 51V

| 3/2−

|

|

|-id=Titanium-52

| 52Ti

| style="text-align:right" | 22

| style="text-align:right" | 30

| 51.9468835(29)

| 1.7(1) min

| β

| 52V

| 0+

|

|

|-id=Titanium-53

| 53Ti

| style="text-align:right" | 22

| style="text-align:right" | 31

| 52.9496707(31)

| 32.7(9) s

| β

| 53V

| (3/2)−

|

|

|-id=Titanium-54

| 54Ti

| style="text-align:right" | 22

| style="text-align:right" | 32

| 53.950892(17)

| 2.1(10) s

| β

| 54V

| 0+

|

|

|-id=Titanium-55

| 55Ti

| style="text-align:right" | 22

| style="text-align:right" | 33

| 54.955091(31)

| 1.3(1) s

| β

| 55V

| (1/2)−

|

|

|-id=Titanium-56

| 56Ti

| style="text-align:right" | 22

| style="text-align:right" | 34

| 55.95768(11)

| 200(5) ms

| β

| 56V

| 0+

|

|

|-id=Titanium-57

| 57Ti

| style="text-align:right" | 22

| style="text-align:right" | 35

| 56.96307(22)

| 95(8) ms

| β

| 57V

| 5/2−#

|

|

|-id=Titanium-58

| 58Ti

| style="text-align:right" | 22

| style="text-align:right" | 36

| 57.96681(20)

| 55(6) ms

| β

| 58V

| 0+

|

|

|-id=Titanium-59

| 59Ti

| style="text-align:right" | 22

| style="text-align:right" | 37

| 58.97222(32)#

| 28.5(19) ms

| β

| 59V

| 5/2−#

|

|

|-id=Titanium-59m

| style="text-indent:1em" | 59mTi

| colspan="3" style="text-indent:2em" | 108.5(5) keV

| 615(11) ns

| IT

| 59Ti

| 1/2−#

|

|

|-id=Titanium-60

| 60Ti

| style="text-align:right" | 22

| style="text-align:right" | 38

| 59.97628(26)

| 22.2(16) ms

| β

| 60V

| 0+

|

|

|-id=Titanium-61

| 61Ti

| style="text-align:right" | 22

| style="text-align:right" | 39

| 60.98243(32)#

| 15(4) ms

| β

| 61V

| 1/2−#

|

|

|-id=Titanium-61m1

| style="text-indent:1em" | 61m1Ti

| colspan="3" style="text-indent:2em" | 125.0(5) keV

| 200(28) ns

| IT

| 61Ti

| 5/2−#

|

|

|-id=Titanium-61m2

| style="text-indent:1em" | 61m2Ti

| colspan="3" style="text-indent:2em" | 700.1(7) keV

| 354(69) ns

| IT

| 61Ti

| 9/2+#

|

|

|-id=Titanium-62

| 62Ti

| style="text-align:right" | 22

| style="text-align:right" | 40

| 61.98690(43)#

| 9# ms
[>620 ns]

|

|

| 0+

|

|

|-id=Titanium-63

| 63Ti

| style="text-align:right" | 22

| style="text-align:right" | 41

| 62.99371(54)#

| 10# ms
[>620 ns]

|

|

| 1/2−#

|

|

|-id=Titanium-64

| 64Ti

| style="text-align:right" | 22

| style="text-align:right" | 42

| 63.99841(64)#

| 5# ms
[>620 ns]

|

|

| 0+

|

|

{{Isotopes table/footer}}

Titanium-44

Titanium-44 (44Ti) is a radioactive isotope of titanium that undergoes electron capture to an excited state of scandium-44 with a half-life of 60 years, before the ground state of 44Sc and ultimately 44Ca are populated.{{cite journal|last1=Motizuki|first1=Y.|last2=Kumagai|first2=S.|title=Radioactivity of the key isotope 44Ti in SN 1987A|date=2004|journal=AIP Conference Proceedings|volume=704|issue=1|pages=369–374|doi=10.1063/1.1737130|arxiv=astro-ph/0312620 |bibcode=2004AIPC..704..369M }} Because titanium-44 can only decay through electron capture, its half-life increases with its ionization state and it becomes stable in its fully ionized state (that is, having a charge of +22).{{cite journal|last1=Mochizuki|first1=Y.|last2=Takahashi|first2=K.|last3=Janka|first3=H.-Th. |last4=Hillebrandt|first4=W.|last5=Diehl|first5=R.|date=2008|title=Titanium-44: Its effective decay rate in young supernova remnants, and its abundance in Cas A|journal=Astronomy and Astrophysics|volume=346|issue=3|pages=831–842|arxiv=astro-ph/9904378}}

Titanium-44 is produced in relative abundance in the alpha process in stellar nucleosynthesis and the early stages of supernova explosions.{{cite report |last1=Fryer |first1=C. |last2=Dimonte |first2=G. |last3=Ellinger |first3=E. |last4=Hungerford |first4=A. |last5=Kares |first5=B. |last6=Magkotsios |first6=G. |last7=Rockefeller |first7=G. |last8=Timmes |first8=F. |last9=Woodward |first9=P. |last10=Young |first10=P. |title=Nucleosynthesis in the Universe, Understanding 44Ti |date=2011 |publisher=Los Alamos National Laboratory |work=ADTSC Science Highlights |pages=42–43 |url=https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2011/docs/2CosmoPDFs/fryer.pdf}} It is produced when calcium-40 fuses with an alpha particle (helium-4 nucleus) in a star's high-temperature environment; the resulting 44Ti nucleus can then fuse with another alpha particle to form chromium-48. The age of supernovae may be determined through measurements of gamma-ray emissions from titanium-44 and its abundance. It was observed in the Cassiopeia A supernova remnant and SN 1987A at a relatively high concentration, a consequence of delayed decay resulting from ionizing conditions.

References

{{reflist}}

  • Isotope masses from:
  • {{NUBASE 2003}}
  • Isotopic compositions and standard atomic masses from:
  • {{CIAAW2003}}
  • {{CIAAW 2005}}
  • Half-life, spin, and isomer data selected from the following sources.
  • {{NUBASE 2003}}
  • {{NNDC}}
  • {{CRC85|chapter=11}}

{{Navbox element isotopes}}

Category:Titanium

Titaniun