J-homomorphism
{{short description|From a homotopy group of a special orthogonal group to a homotopy group of spheres}}
In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by {{harvs|txt|author-link=George W. Whitehead|first=George W.|last=Whitehead|year=1942}}, extending a construction of {{harvs|txt|last=Hopf|first=Heinz|author-link=Heinz Hopf|year=1935}}.
Definition
Whitehead's original homomorphism is defined geometrically, and gives a homomorphism
:
of abelian groups for integers q, and . (Hopf defined this for the special case .)
The J-homomorphism can be defined as follows.
An element of the special orthogonal group SO(q) can be regarded as a map
:
and the homotopy group ) consists of homotopy classes of maps from the r-sphere to SO(q).
Thus an element of can be represented by a map
:
Applying the Hopf construction to this gives a map
:
in , which Whitehead defined as the image of the element of under the J-homomorphism.
Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory:
:
where is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres.
Image of the J-homomorphism
The image of the J-homomorphism was described by {{harvs|txt|last=Adams|first=Frank|author-link=Frank Adams|year=1966}}, assuming the Adams conjecture of {{harvtxt|Adams|1963}} which was proved by {{harvs|txt|last=Quillen|first=Daniel|author-link=Daniel Quillen|year=1971}}, as follows. The group is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise {{harv|Switzer|1975|p=488}}. In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant {{harv|Adams|1966}}, a homomorphism from the stable homotopy groups to . If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of , where is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because is trivial.
:
class="wikitable" style="text-align: center; background-color:white" |
style="text-align:right;width:10%" | r
! style="width:5%" | 0 ! style="width:5%" | 1 ! style="width:5%" | 2 ! style="width:5%" | 3 ! style="width:5%" | 4 ! style="width:5%" | 5 ! style="width:5%" | 6 ! style="width:5%" | 7 ! style="width:5%" | 8 ! style="width:5%" | 9 ! style="width:5%" | 10 ! style="width:5%" | 11 ! style="width:5%" | 12 ! style="width:5%" | 13 ! style="width:5%" | 14 ! style="width:5%" | 15 ! style="width:5%" | 16 ! style="width:5%" | 17 |
---|
style="text-align:right" |
| 1 || 2 || 1 || || 1 || 1 || 1 || || 2 || 2 || 1 || || 1 || 1 || 1 || || 2 || 2 |
style="text-align:right" |
| 1 || 2 || 1 || 24 || 1 || 1 || 1 || 240 || 2 || 2 || 1 || 504 || 1 || 1 || 1 || 480 || 2 || 2 |
style="text-align:right" |
| || 2 || 2 || 24 || 1 || 1 || 2 || 240 || 22 || 23 || 6 || 504 || 1 || 3 || 22 || 480×2 || 22 || 24 |
style="text-align:right" |
| || || || 1⁄6 || || || || −1⁄30 || || || || 1⁄42 || || || || −1⁄30 || || |
Applications
{{harvs|txt|last=Atiyah | first=Michael | author-link=Michael Atiyah |year=1961}} introduced the group J(X) of a space X, which for X a sphere is the image of the J-homomorphism in a suitable dimension.
The cokernel of the J-homomorphism appears in the group Θn of h-cobordism classes of oriented homotopy n-spheres ({{harvtxt|Kosinski |1992}}).
References
- {{Citation | last=Atiyah | first=Michael Francis | author-link=Michael Atiyah | title=Thom complexes | doi=10.1112/plms/s3-11.1.291 | mr=0131880 | year=1961 | journal=Proceedings of the London Mathematical Society |series=Third Series | volume=11 | pages=291–310}}
- {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) I|journal= Topology |volume=2|year=1963|doi=10.1016/0040-9383(63)90001-6|pages=181|issue=3 |doi-access=free}}
- {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) II|journal= Topology |volume=3|year=1965a|doi=10.1016/0040-9383(65)90040-6|pages=137|issue=2 |doi-access=free}}
- {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) III|journal= Topology |volume=3|year=1965b|doi=10.1016/0040-9383(65)90054-6|pages=193|issue=3 |doi-access=}}
- {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) IV|journal= Topology|volume=5|year=1966|doi= 10.1016/0040-9383(66)90004-8|pages=21 |doi-access=}}. {{citation|title= Correction|journal= Topology|volume=7|year=1968|doi= 10.1016/0040-9383(68)90010-4|pages= 331|issue= 3 |doi-access= }}
- {{Citation | last=Hopf | first=Heinz | author-link=Heinz Hopf | title=Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension | url=http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=25 | year=1935 | journal=Fundamenta Mathematicae | volume=25 | pages=427–440}}
- {{Citation |last=Kosinski|first= Antoni A. |title=Differential Manifolds |publisher=Academic Press |location=San Diego, CA |year=1992 |pages=[https://archive.org/details/differentialmani0000kosi/page/195 195ff] |isbn=0-12-421850-4 |url=https://archive.org/details/differentialmani0000kosi/page/195 }}
- {{citation|first=John W.|last= Milnor |author-link=John Milnor|title=Differential topology forty-six years later|journal= Notices of the American Mathematical Society |volume=58|year=2011|issue= 6 |pages=804–809|url=https://www.ams.org/notices/201106/rtx110600804p.pdf}}
- {{Citation | last=Quillen | first=Daniel | author-link=Daniel Quillen | title=The Adams conjecture | doi=10.1016/0040-9383(71)90018-8 | mr=0279804 | year=1971 | journal=Topology | volume=10 | pages=67–80| doi-access= }}
- {{citation|first=Robert M. |last=Switzer |title=Algebraic Topology—Homotopy and Homology |publisher=Springer-Verlag |year=1975 |isbn=978-0-387-06758-2}}
- {{Citation | last=Whitehead | first=George W. | author-link=George W. Whitehead|title=On the homotopy groups of spheres and rotation groups | jstor=1968956 | mr=0007107 | year=1942 | journal=Annals of Mathematics |series=Second Series | volume=43 | pages=634–640 | issue=4 | doi=10.2307/1968956}}
- {{Citation |last=Whitehead | first=George W. | author-link=George W. Whitehead|title=Elements of homotopy theory |publisher=Springer |location=Berlin |year=1978 |isbn=0-387-90336-4 |mr= 0516508 }}