J-homomorphism

{{short description|From a homotopy group of a special orthogonal group to a homotopy group of spheres}}

In mathematics, the J-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by {{harvs|txt|author-link=George W. Whitehead|first=George W.|last=Whitehead|year=1942}}, extending a construction of {{harvs|txt|last=Hopf|first=Heinz|author-link=Heinz Hopf|year=1935}}.

Definition

Whitehead's original homomorphism is defined geometrically, and gives a homomorphism

:J \colon \pi_r (\mathrm{SO}(q)) \to \pi_{r+q}(S^q)

of abelian groups for integers q, and r \ge 2. (Hopf defined this for the special case q = r+1.)

The J-homomorphism can be defined as follows.

An element of the special orthogonal group SO(q) can be regarded as a map

:S^{q-1}\rightarrow S^{q-1}

and the homotopy group \pi_r(\operatorname{SO}(q))) consists of homotopy classes of maps from the r-sphere to SO(q).

Thus an element of \pi_r(\operatorname{SO}(q)) can be represented by a map

:S^r\times S^{q-1}\rightarrow S^{q-1}

Applying the Hopf construction to this gives a map

:S^{r+q}= S^r*S^{q-1}\rightarrow S( S^{q-1}) =S^q

in \pi_{r+q}(S^q), which Whitehead defined as the image of the element of \pi_r(\operatorname{SO}(q)) under the J-homomorphism.

Taking a limit as q tends to infinity gives the stable J-homomorphism in stable homotopy theory:

: J \colon \pi_r(\mathrm{SO}) \to \pi_r^S ,

where \mathrm{SO} is the infinite special orthogonal group, and the right-hand side is the r-th stable stem of the stable homotopy groups of spheres.

Image of the J-homomorphism

The image of the J-homomorphism was described by {{harvs|txt|last=Adams|first=Frank|author-link=Frank Adams|year=1966}}, assuming the Adams conjecture of {{harvtxt|Adams|1963}} which was proved by {{harvs|txt|last=Quillen|first=Daniel|author-link=Daniel Quillen|year=1971}}, as follows. The group \pi_r(\operatorname{SO}) is given by Bott periodicity. It is always cyclic; and if r is positive, it is of order 2 if r is 0 or 1 modulo 8, infinite if r is 3 or 7 modulo 8, and order 1 otherwise {{harv|Switzer|1975|p=488}}. In particular the image of the stable J-homomorphism is cyclic. The stable homotopy groups \pi_r^S are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant {{harv|Adams|1966}}, a homomorphism from the stable homotopy groups to \Q/\Z. If r is 0 or 1 mod 8 and positive, the order of the image is 2 (so in this case the J-homomorphism is injective). If r is 3 or 7 mod 8, the image is a cyclic group of order equal to the denominator of B_{2n}/4n, where B_{2n} is a Bernoulli number. In the remaining cases where r is 2, 4, 5, or 6 mod 8 the image is trivial because \pi_r(\operatorname{SO}) is trivial.

:

class="wikitable" style="text-align: center; background-color:white"
style="text-align:right;width:10%" | r

! style="width:5%" | 0

! style="width:5%" | 1

! style="width:5%" | 2

! style="width:5%" | 3

! style="width:5%" | 4

! style="width:5%" | 5

! style="width:5%" | 6

! style="width:5%" | 7

! style="width:5%" | 8

! style="width:5%" | 9

! style="width:5%" | 10

! style="width:5%" | 11

! style="width:5%" | 12

! style="width:5%" | 13

! style="width:5%" | 14

! style="width:5%" | 15

! style="width:5%" | 16

! style="width:5%" | 17

style="text-align:right" | \pi_r(\operatorname{SO})

| 1 || 2 || 1 || \Z || 1 || 1 || 1 || \Z || 2 || 2 || 1 || \Z || 1 || 1 || 1 || \Z || 2 || 2

style="text-align:right" | |\operatorname{im}(J)|

| 1 || 2 || 1 || 24 || 1 || 1 || 1 || 240 || 2 || 2 || 1 || 504 || 1 || 1 || 1 || 480 || 2 || 2

style="text-align:right" | \pi_r^S

| \Z || 2 || 2 || 24 || 1 || 1 || 2 || 240 || 22 || 23 || 6 || 504 || 1 || 3 || 22 || 480×2 || 22 || 24

style="text-align:right" | B_{2n}

| || || || 16 || || || || −130 || || || || 142 || || || || −130 || ||

Applications

{{harvs|txt|last=Atiyah | first=Michael | author-link=Michael Atiyah |year=1961}} introduced the group J(X) of a space X, which for X a sphere is the image of the J-homomorphism in a suitable dimension.

The cokernel of the J-homomorphism J \colon \pi_n(\mathrm{SO}) \to \pi_n^S appears in the group Θn of h-cobordism classes of oriented homotopy n-spheres ({{harvtxt|Kosinski |1992}}).

References

  • {{Citation | last=Atiyah | first=Michael Francis | author-link=Michael Atiyah | title=Thom complexes | doi=10.1112/plms/s3-11.1.291 | mr=0131880 | year=1961 | journal=Proceedings of the London Mathematical Society |series=Third Series | volume=11 | pages=291–310}}
  • {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) I|journal= Topology |volume=2|year=1963|doi=10.1016/0040-9383(63)90001-6|pages=181|issue=3 |doi-access=free}}
  • {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) II|journal= Topology |volume=3|year=1965a|doi=10.1016/0040-9383(65)90040-6|pages=137|issue=2 |doi-access=free}}
  • {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) III|journal= Topology |volume=3|year=1965b|doi=10.1016/0040-9383(65)90054-6|pages=193|issue=3 |doi-access=}}
  • {{citation|first=J. F. |last=Adams|author-link=Frank Adams|title=On the groups J(X) IV|journal= Topology|volume=5|year=1966|doi= 10.1016/0040-9383(66)90004-8|pages=21 |doi-access=}}. {{citation|title= Correction|journal= Topology|volume=7|year=1968|doi= 10.1016/0040-9383(68)90010-4|pages= 331|issue= 3 |doi-access= }}
  • {{Citation | last=Hopf | first=Heinz | author-link=Heinz Hopf | title=Über die Abbildungen von Sphären auf Sphäre niedrigerer Dimension | url=http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=25 | year=1935 | journal=Fundamenta Mathematicae | volume=25 | pages=427–440}}
  • {{Citation |last=Kosinski|first= Antoni A. |title=Differential Manifolds |publisher=Academic Press |location=San Diego, CA |year=1992 |pages=[https://archive.org/details/differentialmani0000kosi/page/195 195ff] |isbn=0-12-421850-4 |url=https://archive.org/details/differentialmani0000kosi/page/195 }}
  • {{citation|first=John W.|last= Milnor |author-link=John Milnor|title=Differential topology forty-six years later|journal= Notices of the American Mathematical Society |volume=58|year=2011|issue= 6 |pages=804–809|url=https://www.ams.org/notices/201106/rtx110600804p.pdf}}
  • {{Citation | last=Quillen | first=Daniel | author-link=Daniel Quillen | title=The Adams conjecture | doi=10.1016/0040-9383(71)90018-8 | mr=0279804 | year=1971 | journal=Topology | volume=10 | pages=67–80| doi-access= }}
  • {{citation|first=Robert M. |last=Switzer |title=Algebraic Topology—Homotopy and Homology |publisher=Springer-Verlag |year=1975 |isbn=978-0-387-06758-2}}
  • {{Citation | last=Whitehead | first=George W. | author-link=George W. Whitehead|title=On the homotopy groups of spheres and rotation groups | jstor=1968956 | mr=0007107 | year=1942 | journal=Annals of Mathematics |series=Second Series | volume=43 | pages=634–640 | issue=4 | doi=10.2307/1968956}}
  • {{Citation |last=Whitehead | first=George W. | author-link=George W. Whitehead|title=Elements of homotopy theory |publisher=Springer |location=Berlin |year=1978 |isbn=0-387-90336-4 |mr= 0516508 }}