Jackson integral

In q-analog theory, the Jackson integral series in the theory of special functions that expresses the operation inverse to q-differentiation.

The Jackson integral was introduced by Frank Hilton Jackson. For methods of numerical evaluation, see {{Cite journal|last1=Exton|first1=H|title=Basic Fourier series|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=369|issue=1736|pages=115–136|year=1979|doi=10.1098/rspa.1979.0155|bibcode=1979RSPSA.369..115E|s2cid=120587254}} and {{harvtxt|Exton|1983}}.

Definition

Let f(x) be a function of a real variable x. For a a real variable, the Jackson integral of f is defined by the following series expansion:

: \int_0^a f(x)\,{\rm d}_q x = (1-q)\,a\sum_{k=0}^{\infty}q^k f(q^k a).

Consistent with this is the definition for a \to \infty

: \int_0^\infty f(x)\,{\rm d}_q x = (1-q)\sum_{k=-\infty}^{\infty}q^k f(q^k ).

More generally, if g(x) is another function and Dqg denotes its q-derivative, we can formally write

: \int f(x)\,D_q g\,{\rm d}_q x = (1-q)\,x\sum_{k=0}^{\infty}q^k f(q^k x)\,D_q g(q^k x) = (1-q)\,x\sum_{k=0}^{\infty}q^k f(q^k x)\tfrac{g(q^{k}x)-g(q^{k+1}x)}{(1-q)q^k x}, or

: \int f(x)\,{\rm d}_q g(x) = \sum_{k=0}^{\infty} f(q^k x)\cdot(g(q^{k}x)-g(q^{k+1}x)),

giving a q-analogue of the Riemann–Stieltjes integral.

Jackson integral as q-antiderivative

Just as the ordinary antiderivative of a continuous function can be represented by its Riemann integral, it is possible to show that the Jackson integral gives a unique q-antiderivative

within a certain class of functions (see {{Cite journal|last1=Kempf|first1=A|title=Algebraic q-Integration and Fourier Theory on Quantum and Braided Spaces|journal=Journal of Mathematical Physics|volume=35|issue=12|pages=6802–6837|last2=Majid|first2=Shahn|year=1994|arxiv=hep-th/9402037|bibcode=1994JMP....35.6802K|doi=10.1063/1.530644|s2cid=16930694}}).

= Theorem =

Suppose that 0 If |f(x)x^\alpha| is bounded on the interval [0,A) for some 0\leq\alpha<1, then the Jackson integral converges to a function F(x) on [0,A) which is a q-antiderivative of f(x). Moreover, F(x) is continuous at x=0 with F(0)=0 and is a unique antiderivative of f(x) in this class of functions.Kac-Cheung, Theorem 19.1.

Notes

References

  • Victor Kac, Pokman Cheung, Quantum Calculus, Universitext, Springer-Verlag, 2002. {{ISBN|0-387-95341-8}}
  • Jackson F H (1904), "A generalization of the functions Γ(n) and xn", Proc. R. Soc. 74 64–72.
  • Jackson F H (1910), "On q-definite integrals", Q. J. Pure Appl. Math. 41 193–203.
  • {{cite book |last1=Exton |first1=Harold |title=Q-hypergeometric functions and applications |date=1983 |publisher=E. Horwood |location=Chichester [West Sussex] |isbn=978-0470274538}}

Category:Special functions

Category:Q-analogs

{{mathanalysis-stub}}