Jacobi form

{{Short description|Class of complex vector function}}

In mathematics, a Jacobi form is an automorphic form on the Jacobi group, which is the semidirect product of the symplectic group Sp(n;R) and the Heisenberg group H^{(n,h)}_R. The theory was first systematically studied by {{harvtxt|Eichler|Zagier|1985}}.

Definition

A Jacobi form of level 1, weight k and index m is a function \phi(\tau,z) of two complex variables (with τ in the upper half plane) such that

  • \phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = (c\tau+d)^ke^{\frac{2\pi i mcz^2}{c\tau+d}}\phi(\tau,z)\text{ for }{a\ b\choose c\ d}\in \mathrm{SL}_2(\mathbb{Z})
  • \phi(\tau,z+\lambda\tau+\mu) = e^{-2\pi i m(\lambda^2\tau+2\lambda z)}\phi(\tau,z) for all integers λ, μ.
  • \phi has a Fourier expansion

:: \phi(\tau,z) = \sum_{n\ge 0} \sum_{r^2\le 4mn} C(n,r)e^{2\pi i (n\tau+rz)}.

Examples

Examples in two variables include Jacobi theta functions, the Weierstrass ℘ function, and Fourier–Jacobi coefficients of Siegel modular forms of genus 2. Examples with more than two variables include characters of some irreducible highest-weight representations of affine Kac–Moody algebras. Meromorphic Jacobi forms appear in the theory of Mock modular forms.

References

  • {{Citation | last1=Eichler | first1=Martin | last2=Zagier | first2=Don | title=The theory of Jacobi forms | publisher=Birkhäuser Boston | location=Boston, MA | series=Progress in Mathematics | isbn=978-0-8176-3180-2 |mr=781735 | year=1985 | volume=55 | doi=10.1007/978-1-4684-9162-3 }}

Category:Modular forms

Category:Theta functions