Jacobi method for complex Hermitian matrices
In mathematics, the Jacobi method for complex Hermitian matrices is a generalization of the Jacobi iteration method. The Jacobi iteration method is also explained in "Introduction to Linear Algebra" by {{harvtxt|Strang|1993}}.
Derivation
The complex unitary rotation matrices Rpq can be used for Jacobi iteration of complex Hermitian matrices in order to find a numerical estimation of their eigenvectors and eigenvalues simultaneously.
Similar to the Givens rotation matrices, Rpq are defined as:
:
\begin{align}
(R_{pq})_{m,n} & = \delta_{m,n} & \qquad m,n \ne p,q, \\[10pt]
(R_{pq})_{p,p} & = \frac{+1}{\sqrt{2}} e^{-i\theta}, \\[10pt]
(R_{pq})_{q,p} & = \frac{+1}{\sqrt{2}} e^{-i\theta}, \\[10pt]
(R_{pq})_{p,q} & = \frac{-1}{\sqrt{2}} e^{+i\theta}, \\[10pt]
(R_{pq})_{q,q} & = \frac{+1}{\sqrt{2}} e^{+i\theta}
\end{align}
Each rotation matrix, Rpq, will modify only the pth and qth rows or columns of a matrix M if it is applied from left or right, respectively:
:
\begin{align}
(R_{pq} M)_{m,n} & =
\begin{cases}
M_{m,n} & m \ne p,q \\[8pt]
\frac{1}{\sqrt{2}} (M_{p,n} e^{-i\theta} - M_{q,n} e^{+i\theta}) & m = p \\[8pt]
\frac{1}{\sqrt{2}} (M_{p,n} e^{-i\theta} + M_{q,n} e^{+i\theta}) & m = q
\end{cases} \\[8pt]
(MR_{pq}^\dagger)_{m,n} & =
\begin{cases}
M_{m,n} & n \ne p,q \\
\frac{1}{\sqrt{2}} (M_{m,p} e^{+i\theta} - M_{m,q} e^{-i\theta}) & n = p \\[8pt]
\frac{1}{\sqrt{2}} (M_{m,p} e^{+i\theta} + M_{m,q} e^{-i\theta}) & n = q
\end{cases}
\end{align}
A Hermitian matrix, H is defined by the conjugate transpose symmetry property:
:
By definition, the complex conjugate of a complex unitary rotation matrix, R is its inverse and also a complex unitary rotation matrix:
:
\begin{align}
R^\dagger_{pq} & = R^{-1}_{pq} \\[6pt]
\Rightarrow\ R^{\dagger^\dagger}_{pq} & = R^{-1^\dagger}_{pq} = R^{-1^{-1}}_{pq} = R_{pq}.
\end{align}
Hence, the complex equivalent Givens transformation of a Hermitian matrix H is also a Hermitian matrix similar to H:
:
\begin{align}
T & \equiv R_{pq} H R^\dagger_{pq}, & & \\[6pt]
T^\dagger & = (R_{pq} H R^\dagger_{pq})^\dagger = R^{\dagger^\dagger}_{pq} H^\dagger R^\dagger_{pq} = R_{pq} H R^\dagger_{pq} = T
\end{align}
The elements of T can be calculated by the relations above. The important elements for the Jacobi iteration are the following four:
:
\begin{array}{clrcl}
T_{p,p} & = & & \frac{H_{p,p} + H_{q,q}}{2} & - \ \ \ \mathrm{Re}\{H_{p,q} e^{-2i\theta}\}, \\[8pt]
T_{p,q} & = & & \frac{H_{p,p} - H_{q,q}}{2} & + \ i \ \mathrm{Im}\{H_{p,q} e^{-2i\theta}\}, \\[8pt]
T_{q,p} & = & & \frac{H_{p,p} - H_{q,q}}{2} & - \ i \ \mathrm{Im}\{H_{p,q} e^{-2i\theta}\}, \\[8pt]
T_{q,q} & = & & \frac{H_{p,p} + H_{q,q}}{2} & + \ \ \ \mathrm{Re}\{H_{p,q} e^{-2i\theta}\}.
\end{array}
Each Jacobi iteration with RJpq generates a transformed matrix, TJ, with TJp,q = 0. The rotation matrix RJp,q is defined as a product of two complex unitary rotation matrices.
:
\begin{align}
R^J_{pq} & \equiv R_{pq}(\theta_2)\, R_{pq}(\theta_1),\text{ with} \\[8pt]
\theta_1 & \equiv \frac{2\phi_1 - \pi}{4} \text{ and } \theta_2 \equiv \frac{\phi_2}{2},
\end{align}
where the phase terms, and are given by:
:
\begin{align}
\tan \phi_1 & = \frac{\mathrm{Im}\{H_{p,q}\}}{\mathrm{Re}\{H_{p,q}\}}, \\[8pt]
\tan \phi_2 & = \frac{2 |H_{p,q}|}{H_{p,p} - H_{q,q}}.
\end{align}
Finally, it is important to note that the product of two complex rotation matrices for given angles θ1 and θ2 cannot be transformed into a single complex unitary rotation matrix Rpq(θ). The product of two complex rotation matrices are given by:
:
\begin{align}
\left[ R_{pq}(\theta_2)\, R_{pq}(\theta_1) \right]_{m,n} =
\begin{cases}
\ \ \ \ \delta_{m,n} & m,n \ne p,q, \\[8pt]
-i e^{-i\theta_1}\, \sin{\theta_2} & m = p \text{ and } n = p, \\[8pt]
- e^{+i\theta_1}\, \cos{\theta_2} & m = p \text{ and } n = q, \\[8pt]
\ \ \ \ e^{-i\theta_1}\, \cos{\theta_2} & m = q \text{ and } n = p, \\[8pt]
+i e^{+i\theta_1}\, \sin{\theta_2} & m = q \text{ and } n = q.
\end{cases}
\end{align}
References
- {{Citation | last=Strang | first=G. | authorlink=Gilbert Strang | title=Introduction to Linear Algebra | publisher=Wellesley Cambridge Press | location = MA | year=1993}}.
{{Numerical linear algebra}}