Jacobi zeta function

In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as \operatorname{zn}(u,k){{Cite web|url=https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf|title=Table of Integrals, Series, and Products|last=Gradshteyn, Ryzhik|first=I.S., I.M.|date=|website=booksite.com|archive-url=}}

:\Theta(u)=\Theta_{4}\left(\frac{\pi u}{2K}\right)

:Z(u)=\frac{\partial}{\partial u}\ln\Theta(u) =\frac{\Theta'(u)}{\Theta(u)}{{Cite book|url=https://books.google.com/books?id=KiPCAgAAQBAJ&q=importance+Jacobi+zeta+function&pg=PA576|title=Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables|last1=Abramowitz|first1=Milton|last2=Stegun|first2=Irene A.|date=2012-04-30|publisher=Courier Corporation|isbn=978-0-486-15824-2|language=en}}

:Z(\phi|m)=E(\phi|m)-\frac{E(m)}{K(m)}F(\phi|m){{Cite web|url=http://mathworld.wolfram.com/JacobiZetaFunction.html|title=Jacobi Zeta Function|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-02}}

:Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all their relevant fields and application.

:\operatorname{zn}(u,k)=Z(u)=\int_{0}^{u}\operatorname{dn}^{2}v-\frac{E}{K}dv

:This relates Jacobi's common notation of, \operatorname{dn}{u}=\sqrt{1-m \sin{\theta}^2}, \operatorname{sn}u= \sin{\theta} , \operatorname{cn}u= \cos{\theta}. to Jacobi's Zeta function.

:Some additional relations include ,

: \operatorname{zn}(u,k)=\frac{\pi}{2K}\frac{\Theta_1'\frac{\pi u}{2K}}{\Theta_1\frac{\pi u}{2K}}-\frac{\operatorname{cn}{u}\,\operatorname{dn}{u}}{\operatorname{sn}{u}}

: \operatorname{zn}(u,k)=\frac{\pi}{2K}\frac{\Theta_2'\frac{\pi u}{2K}}{\Theta_2\frac{\pi u}{2K}}-\frac{\operatorname{sn}{u}\,\operatorname{dn}{u}}{\operatorname{cn}{u}}

: \operatorname{zn}(u,k)=\frac{\pi}{2K}\frac{\Theta_3'\frac{\pi u}{2K}}{\Theta_3\frac{\pi u}{2K}}-k^2\frac{\operatorname{sn}{u}\,\operatorname{cn}{u}}{\operatorname{dn}{u}}

: \operatorname{zn}(u,k)=\frac{\pi}{2K}\frac{\Theta_4'\frac{\pi u}{2K}}{\Theta_4\frac{\pi u}{2K}}

:

:

References

{{Reflist}}

  • https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf Pg.xxxiv
  • {{AS ref|16|578}}
  • http://mathworld.wolfram.com/JacobiZetaFunction.html

Category:Special functions

{{mathanalysis-stub}}