In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as [{{Cite web|url=https://booksite.elsevier.com/samplechapters/9780123736376/Sample_Chapters/01~Front_Matter.pdf|title=Table of Integrals, Series, and Products|last=Gradshteyn, Ryzhik|first=I.S., I.M.|date=|website=booksite.com|archive-url=}}]
:
: [{{Cite book|url=https://books.google.com/books?id=KiPCAgAAQBAJ&q=importance+Jacobi+zeta+function&pg=PA576|title=Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables|last1=Abramowitz|first1=Milton|last2=Stegun|first2=Irene A.|date=2012-04-30|publisher=Courier Corporation|isbn=978-0-486-15824-2|language=en}}]
:[{{Cite web|url=http://mathworld.wolfram.com/JacobiZetaFunction.html|title=Jacobi Zeta Function|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-02}}]
:Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all their relevant fields and application.
:
:This relates Jacobi's common notation of, , , . to Jacobi's Zeta function.
:Some additional relations include ,
:
:
:
:
:
: