Jean Gruenberg
{{short description|Swiss biologist}}
{{Infobox academic
|honorific_prefix = Professor
|name = Jean Gruenberg
|honorific_suffix =
|image = Jean Gruenberg.jpg
|image_size =
|alt =
|caption = Gruenberg in 2007
|native_name =
|native_name_lang =
|birth_name =
|birth_date = {{birth date and age|1950|05|13|df=yes}}
|birth_place =
|death_date =
|death_place =
|death_cause =
|region =
|nationality =
|citizenship =
|residence =
|other_names =
|occupation =
|period =
|known_for =
|title =
|boards =
|spouse =
|children =
|parents =
|relatives =
|awards =
|website =
|education =
|alma_mater =
|thesis_title =
|thesis_url =
|thesis_year =
|school_tradition =
|doctoral_advisor =
|academic_advisors =
|influences =
|era =
|discipline = Cell Biology
|sub_discipline = Intracellular Trafficking
|workplaces =
|doctoral_students =
|notable_students =
|main_interests =
|notable_works =
|notable_ideas =
|influenced =
|signature =
|signature_alt =
|signature_size =
|footnotes = }}
Jean Gruenberg (born May 13, 1950) is a Swiss biologist, and a professor at the University of Geneva. His research in the fields of cell biology and biochemistry has significantly contributed to a better understanding of the molecular mechanisms involved in the intracellular traffic within eukaryotic cells, more especially in the endolysosomal pathway.
Using innovative approaches such as phospholipid-specific antibodies and reconstituted cell-free systems, Jean Gruenberg and his colleagues were able to unravel several important mechanisms regulating the biogenesis and membrane dynamics of early and late endosomal compartments.
Biography
Jean Gruenberg was born in Switzerland in 1950.{{cn|date=July 2023}} Jean Gruenberg is married to Françoise Gisou van der Goot, and they have two children Sébastien and a girl.1950.{{cn|date=July 2023}} Jean Gruenberg and his family reside in Trelex Switzerland and he works at the University of Geneva as an emeritus professor in the Department of Biochemistry.
Scientific achievements
= Cell-free reconstitution of endosomal fission and fusion events =
After early studies on parasites (T. brucei and P. falciparum),{{Cite journal|last1=Gruenberg|first1=J.|last2=Sharma|first2=P. R.|last3=Deshusses|first3=J.|date=1978-09-01|title=D-Glucose transport in Trypanosoma brucei. D-Glucose transport is the rate-limiting step of its metabolism|journal=European Journal of Biochemistry|volume=89|issue=2|pages=461–469|issn=0014-2956|pmid=710404|doi=10.1111/j.1432-1033.1978.tb12549.x|doi-access=free}}{{Cite journal|last1=Gruenberg|first1=J.|last2=Sherman|first2=I. W.|date=1983|title=Isolation and characterization of the plasma membrane of human erythrocytes infected with the malarial parasite Plasmodium falciparum|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=80|issue=4|pages=1087–1091|issn=0027-8424|pmc=393533|pmid=6341989|doi=10.1073/pnas.80.4.1087|bibcode=1983PNAS...80.1087G|doi-access=free}} Jean Gruenberg switched focus and studied the dynamics endosomal processes when he started to work at the European Molecular Biology Laboratory (EMBL) with Kate Howell, and made several important discoveries on the molecular factors directing endosome dynamics, and was successful in reconstituting the process in vitro.{{Cite journal|last1=Gruenberg|first1=J. E.|last2=Howell|first2=K. E.|date=1986-12-01|title=Reconstitution of vesicle fusions occurring in endocytosis with a cell-free system|journal=The EMBO Journal|volume=5|issue=12|pages=3091–3101|issn=0261-4189|pmc=1167298|pmid=3028771|doi=10.1002/j.1460-2075.1986.tb04615.x}}{{Cite journal|last1=Gruenberg|first1=J.|last2=Howell|first2=K. E.|date=1988|title=Fusion in the endocytic pathway reconstituted in a cell-free system using immuno-isolated fractions|journal=Progress in Clinical and Biological Research|volume=270|pages=317–331|issn=0361-7742|pmid=3045833}}{{Cite journal|last1=Howell|first1=K. E.|last2=Devaney|first2=E.|last3=Gruenberg|first3=J.|date=1989|title=Subcellular fractionation of tissue culture cells|journal=Trends in Biochemical Sciences|volume=14|issue=2|pages=44–47|issn=0968-0004|pmid=2705208|doi=10.1016/0968-0004(89)90040-6}}{{Cite journal|last1=Gruenberg|first1=J.|last2=Griffiths|first2=G.|last3=Howell|first3=K. E.|date=1989|title=Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro|journal=The Journal of Cell Biology|volume=108|issue=4|pages=1301–1316|issn=0021-9525|pmc=2115527|pmid=2538480|doi=10.1083/jcb.108.4.1301}} When he became an independent investigator, first at the EMBL and then at the University of Geneva, he continued this line of research and worked on the characterization of early and late endosomes, and identified a transport intermediate between these organelles known as the ECVs/MVBs (Early Carrier Vesicles / MultiVesicular Bodies).{{Cite journal|last1=Aniento|first1=F.|last2=Emans|first2=N.|last3=Griffiths|first3=G.|last4=Gruenberg|first4=J.|date=1993|title=Cytoplasmic dynein-dependent vesicular transport from early to late endosomes|journal=The Journal of Cell Biology|volume=123|issue=6 Pt 1|pages=1373–1387|issn=0021-9525|pmc=2290907|pmid=8253838|doi=10.1083/jcb.123.6.1373}}{{Cite journal|last1=Clague|first1=M. J.|last2=Urbé|first2=S.|last3=Aniento|first3=F.|last4=Gruenberg|first4=J.|date=1994-01-07|title=Vacuolar ATPase activity is required for endosomal carrier vesicle formation|journal=The Journal of Biological Chemistry|volume=269|issue=1|pages=21–24|doi=10.1016/S0021-9258(17)42302-7|issn=0021-9258|pmid=8276796|doi-access=free}}{{Cite journal|last1=Gu|first1=F.|last2=Gruenberg|first2=J.|date=1999-06-04|title=Biogenesis of transport intermediates in the endocytic pathway|journal=FEBS Letters|volume=452|issue=1–2|pages=61–66|issn=0014-5793|pmid=10376679|doi=10.1016/s0014-5793(99)00561-x|doi-access=free}}
= Molecular mechanisms of endosomal biogenesis and membrane dynamics =
Throughout his career, Jean Gruenberg and his colleagues identified several molecular factors directing endosomal biogenesis and dynamics, including various cytoskeleton-associated proteins,{{Cite journal|last1=Bomsel|first1=M.|last2=Parton|first2=R.|last3=Kuznetsov|first3=S. A.|last4=Schroer|first4=T. A.|last5=Gruenberg|first5=J.|date=1990-08-24|title=Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells|journal=Cell|volume=62|issue=4|pages=719–731|issn=0092-8674|pmid=2143699|doi=10.1016/0092-8674(90)90117-w|s2cid=31624175}}{{Cite journal|last1=Muriel|first1=Olivia|last2=Tomas|first2=Alejandra|last3=Scott|first3=Cameron C.|last4=Gruenberg|first4=Jean|date=2016-11-01|title=Moesin and cortactin control actin-dependent multivesicular endosome biogenesis|journal=Molecular Biology of the Cell|volume=27|issue=21|pages=3305–3316|doi=10.1091/mbc.E15-12-0853|issn=1059-1524|pmc=5170863|pmid=27605702}} the small GTPases Rab5{{Cite journal|last1=Gorvel|first1=J. P.|last2=Chavrier|first2=P.|last3=Zerial|first3=M.|last4=Gruenberg|first4=J.|date=1991-03-08|title=rab5 controls early endosome fusion in vitro|journal=Cell|volume=64|issue=5|pages=915–925|issn=0092-8674|pmid=1900457|doi=10.1016/0092-8674(91)90316-q|s2cid=38615225}}{{Cite journal|last1=Stenmark|first1=H.|last2=Parton|first2=R. G.|last3=Steele-Mortimer|first3=O.|last4=Lütcke|first4=A.|last5=Gruenberg|first5=J.|last6=Zerial|first6=M.|date=1994-03-15|title=Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis|journal=The EMBO Journal|volume=13|issue=6|pages=1287–1296|issn=0261-4189|pmc=394944|pmid=8137813|doi=10.1002/j.1460-2075.1994.tb06381.x}} and Rab7,{{Cite journal|last1=Lebrand|first1=Cécile|last2=Corti|first2=Michela|last3=Goodson|first3=Holly|last4=Cosson|first4=Pierre|last5=Cavalli|first5=Valeria|last6=Mayran|first6=Nathalie|last7=Fauré|first7=Julien|last8=Gruenberg|first8=Jean|date=2002-03-15|title=Late endosome motility depends on lipids via the small GTPase Rab7|journal=The EMBO Journal|volume=21|issue=6|pages=1289–1300|doi=10.1093/emboj/21.6.1289|issn=0261-4189|pmc=125356|pmid=11889035}} Annexin A2 (previously named Annexin II),{{Cite journal|date=1993-03-02|title=Annexin II is a major component of fusogenic endosomal vesicles|journal=The Journal of Cell Biology|volume=120|issue=6|pages=1357–1369|issn=0021-9525|pmc=2119741|pmid=8449982|last1=Emans|first1=N.|last2=Gorvel|first2=J. P.|last3=Walter|first3=C.|last4=Gerke|first4=V.|last5=Kellner|first5=R.|last6=Griffiths|first6=G.|last7=Gruenberg|first7=J.|doi=10.1083/jcb.120.6.1357}}{{Cite journal|last1=Harder|first1=T.|last2=Kellner|first2=R.|last3=Parton|first3=R. G.|last4=Gruenberg|first4=J.|date=1997|title=Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol|journal=Molecular Biology of the Cell|volume=8|issue=3|pages=533–545|issn=1059-1524|pmc=276102|pmid=9188103|doi=10.1091/mbc.8.3.533}}{{Cite journal|last1=Mayran|first1=Nathalie|last2=Parton|first2=Robert G.|last3=Gruenberg|first3=Jean|date=2003-07-01|title=Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells|journal=The EMBO Journal|volume=22|issue=13|pages=3242–3253|doi=10.1093/emboj/cdg321|issn=0261-4189|pmc=165635|pmid=12839987}}{{Cite journal|last1=Morel|first1=Etienne|last2=Gruenberg|first2=Jean|date=2007-10-31|title=The p11/S100A10 Light Chain of Annexin A2 Is Dispensable for Annexin A2 Association to Endosomes and Functions in Endosomal Transport|journal=PLOS ONE|volume=2|issue=10|pages=e1118|doi=10.1371/journal.pone.0001118|issn=1932-6203|pmc=2040519|pmid=17971878|bibcode=2007PLoSO...2.1118M|doi-access=free}}{{Cite journal|last1=Morel|first1=Etienne|last2=Gruenberg|first2=Jean|date=2009-01-16|title=Annexin A2 binding to endosomes and functions in endosomal transport are regulated by tyrosine 23 phosphorylation|journal=The Journal of Biological Chemistry|volume=284|issue=3|pages=1604–1611|doi=10.1074/jbc.M806499200|issn=0021-9258|pmid=18990701|doi-access=free}}{{Cite journal|last1=Morel|first1=Etienne|last2=Parton|first2=Robert G.|last3=Gruenberg|first3=Jean|date=2009|title=Annexin A2-dependent polymerization of actin mediates endosome biogenesis|journal=Developmental Cell|volume=16|issue=3|pages=445–457|doi=10.1016/j.devcel.2009.01.007|issn=1878-1551|pmid=19289089|doi-access=free}} the vacuolar ATPase, COP coat proteins,{{Cite journal|last1=Aniento|first1=F.|last2=Gu|first2=F.|last3=Parton|first3=R. G.|last4=Gruenberg|first4=J.|date=1996|title=An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes|journal=The Journal of Cell Biology|volume=133|issue=1|pages=29–41|issn=0021-9525|pmc=2120778|pmid=8601610|doi=10.1083/jcb.133.1.29}}{{Cite journal|last1=Gu|first1=Feng|last2=Aniento|first2=Fernando|last3=Parton|first3=Robert G.|last4=Gruenberg|first4=Jean|date=1997-12-01|title=Functional Dissection of COP-I Subunits in the Biogenesis of Multivesicular Endosomes|journal=The Journal of Cell Biology|volume=139|issue=5|pages=1183–1195|issn=0021-9525|pmc=2140201|pmid=9382865|doi=10.1083/jcb.139.5.1183}} the N-ethylmaleimide sensitive factor,{{Cite journal|last1=Robinson|first1=L. J.|last2=Aniento|first2=F.|last3=Gruenberg|first3=J.|date=1997|title=NSF is required for transport from early to late endosomes|journal=Journal of Cell Science|volume=110 ( Pt 17)|issue=17|pages=2079–2087|doi=10.1242/jcs.110.17.2079|issn=0021-9533|pmid=9378758}} the small transmembrane proteins of the p24 family,{{Cite journal|last1=Rojo|first1=M.|last2=Pepperkok|first2=R.|last3=Emery|first3=G.|last4=Kellner|first4=R.|last5=Stang|first5=E.|last6=Parton|first6=R. G.|last7=Gruenberg|first7=J.|date=1997-12-01|title=Involvement of the transmembrane protein p23 in biosynthetic protein transport|journal=The Journal of Cell Biology|volume=139|issue=5|pages=1119–1135|issn=0021-9525|pmc=2140216|pmid=9382861|doi=10.1083/jcb.139.5.1119}}{{Cite journal|last1=Rojo|first1=M.|last2=Emery|first2=G.|last3=Marjomäki|first3=V.|last4=McDowall|first4=A. W.|last5=Parton|first5=R. G.|last6=Gruenberg|first6=J.|date=2000|title=The transmembrane protein p23 contributes to the organization of the Golgi apparatus|journal=Journal of Cell Science|volume=113 ( Pt 6)|issue=6|pages=1043–1057|doi=10.1242/jcs.113.6.1043|issn=0021-9533|pmid=10683152|url=https://espace.library.uq.edu.au/view/UQ:139317/UQ139317_OA.pdf}}{{Cite journal|last1=Emery|first1=G.|last2=Rojo|first2=M.|last3=Gruenberg|first3=J.|date=2000|title=Coupled transport of p24 family members|journal=Journal of Cell Science|volume=113 ( Pt 13)|issue=13|pages=2507–2516|doi=10.1242/jcs.113.13.2507|issn=0021-9533|pmid=10852829}}{{Cite journal|last1=Emery|first1=Gregory|last2=Parton|first2=Robert G.|last3=Rojo|first3=Manuel|last4=Gruenberg|first4=Jean|date=2003-12-01|title=The trans-membrane protein p25 forms highly specialized domains that regulate membrane composition and dynamics|journal=Journal of Cell Science|volume=116|issue=Pt 23|pages=4821–4832|doi=10.1242/jcs.00802|issn=0021-9533|pmid=14600267|doi-access=free}} the p38 MAP kinase,{{Cite journal|last1=Cavalli|first1=V.|last2=Vilbois|first2=F.|last3=Corti|first3=M.|last4=Marcote|first4=M. J.|last5=Tamura|first5=K.|last6=Karin|first6=M.|last7=Arkinstall|first7=S.|last8=Gruenberg|first8=J.|date=2001|title=The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex|journal=Molecular Cell|volume=7|issue=2|pages=421–432|issn=1097-2765|pmid=11239470|doi=10.1016/s1097-2765(01)00189-7|doi-access=free}} phosphatidylinositol-3-phosphate,{{Cite journal|last1=Petiot|first1=A.|last2=Faure|first2=J.|last3=Stenmark|first3=H.|last4=Gruenberg|first4=J.|date=2003-09-15|title=PI3P signaling regulates receptor sorting but not transport in the endosomal pathway|journal=The Journal of Cell Biology|volume=162|issue=6|pages=971–979|doi=10.1083/jcb.200303018|issn=0021-9525|pmc=2172844|pmid=12975344}} intra-endosomal cholesterol,{{Cite journal|last1=Sobo|first1=Komla|last2=Le Blanc|first2=Isabelle|last3=Luyet|first3=Pierre-Philippe|last4=Fivaz|first4=Marc|last5=Ferguson|first5=Charles|last6=Parton|first6=Robert G.|last7=Gruenberg|first7=Jean|last8=van der Goot|first8=F. Gisou|date=2007-09-05|title=Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking|journal=PLOS ONE|volume=2|issue=9|pages=e851|doi=10.1371/journal.pone.0000851|issn=1932-6203|pmc=1952175|pmid=17786222|bibcode=2007PLoSO...2..851S|doi-access=free}}{{Cite journal|last1=Chevallier|first1=Julien|last2=Chamoun|first2=Zeina|last3=Jiang|first3=Guowei|last4=Prestwich|first4=Glenn|last5=Sakai|first5=Naomi|last6=Matile|first6=Stefan|last7=Parton|first7=Robert G.|last8=Gruenberg|first8=Jean|date=2008-10-10|title=Lysobisphosphatidic acid controls endosomal cholesterol levels|journal=The Journal of Biological Chemistry|volume=283|issue=41|pages=27871–27880|doi=10.1074/jbc.M801463200|issn=0021-9258|pmid=18644787|doi-access=free}} the redox sensor thioredoxin-like protein,{{Cite journal|last1=Felberbaum-Corti|first1=Michela|last2=Morel|first2=Etienne|last3=Cavalli|first3=Valeria|last4=Vilbois|first4=Francis|last5=Gruenberg|first5=Jean|date=2007-11-07|title=The Redox Sensor TXNL1 Plays a Regulatory Role in Fluid Phase Endocytosis|journal=PLOS ONE|volume=2|issue=11|pages=e1144|doi=10.1371/journal.pone.0001144|issn=1932-6203|pmc=2043495|pmid=17987124|bibcode=2007PLoSO...2.1144F|doi-access=free}} sorting nexins,{{Cite journal|last1=Pons|first1=Véronique|last2=Luyet|first2=Pierre-Philippe|last3=Morel|first3=Etienne|last4=Abrami|first4=Laurence|last5=van der Goot|first5=F. Gisou|last6=Parton|first6=Robert G|last7=Gruenberg|first7=Jean|date=2008|title=Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies|journal=PLOS Biology|volume=6|issue=9|pages=e214|doi=10.1371/journal.pbio.0060214|issn=1544-9173|pmc=2528051|pmid=18767904 |doi-access=free }}{{Cite journal|last1=Brankatschk|first1=Ben|last2=Pons|first2=Véronique|last3=Parton|first3=Robert G.|last4=Gruenberg|first4=Jean|date=2011-07-06|title=Role of SNX16 in the Dynamics of Tubulo-Cisternal Membrane Domains of Late Endosomes|journal=PLOS ONE|volume=6|issue=7|pages=e21771|doi=10.1371/journal.pone.0021771|issn=1932-6203|pmc=3130770|pmid=21754999|bibcode=2011PLoSO...621771B|doi-access=free}}{{Cite journal|last1=Pons|first1=Véronique|last2=Ustunel|first2=Cansel|last3=Rolland|first3=Corinne|last4=Torti|first4=Eleonora|last5=Parton|first5=Robert G.|last6=Gruenberg|first6=Jean|date=2012-06-15|title=SNX12 Role in Endosome Membrane Transport|journal=PLOS ONE|volume=7|issue=6|pages=e38949|doi=10.1371/journal.pone.0038949|issn=1932-6203|pmc=3376135|pmid=22719997|bibcode=2012PLoSO...738949P|doi-access=free}} the adaptor protein complex AP1,{{Cite journal|last1=Laulagnier|first1=Karine|last2=Schieber|first2=Nicole L.|last3=Maritzen|first3=Tanja|last4=Haucke|first4=Volker|last5=Parton|first5=Robert G.|last6=Gruenberg|first6=Jean|date=2011-06-15|title=Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes|journal=Molecular Biology of the Cell|volume=22|issue=12|pages=2068–2082|doi=10.1091/mbc.E11-03-0193|issn=1059-1524|pmc=3113771|pmid=21525240}} components of ESCRTs and associated proteins{{Cite journal|last1=Matsuo|first1=Hirotami|last2=Chevallier|first2=Julien|last3=Mayran|first3=Nathalie|last4=Le Blanc|first4=Isabelle|last5=Ferguson|first5=Charles|last6=Fauré|first6=Julien|last7=Blanc|first7=Nathalie Sartori|last8=Matile|first8=Stefan|last9=Dubochet|first9=Jacques|date=2004-01-23|title=Role of LBPA and Alix in multivesicular liposome formation and endosome organization|journal=Science|volume=303|issue=5657|pages=531–534|doi=10.1126/science.1092425|issn=1095-9203|pmid=14739459|bibcode=2004Sci...303..531M|s2cid=36353407}}{{Cite journal|last1=Falguières|first1=Thomas|last2=Luyet|first2=Pierre-Philippe|last3=Bissig|first3=Christin|last4=Scott|first4=Cameron C.|last5=Velluz|first5=Marie-Claire|last6=Gruenberg|first6=Jean|date=2008|title=In Vitro Budding of Intralumenal Vesicles into Late Endosomes Is Regulated by Alix and Tsg101|journal=Molecular Biology of the Cell|volume=19|issue=11|pages=4942–4955|doi=10.1091/mbc.E08-03-0239|issn=1059-1524|pmc=2575168|pmid=18768755}}{{Cite journal|last1=Luyet|first1=Pierre-Philippe|last2=Falguières|first2=Thomas|last3=Pons|first3=Véronique|last4=Pattnaik|first4=Asit K.|last5=Gruenberg|first5=Jean|date=2008|title=The ESCRT-I subunit TSG101 controls endosome-to-cytosol release of viral RNA|journal=Traffic|volume=9|issue=12|pages=2279–2290|doi=10.1111/j.1600-0854.2008.00820.x|issn=1600-0854|pmid=18817529|doi-access=free}}{{Cite journal|last1=Falguières|first1=Thomas|last2=Castle|first2=David|last3=Gruenberg|first3=Jean|date=2012|title=Regulation of the MVB pathway by SCAMP3|journal=Traffic|volume=13|issue=1|pages=131–142|doi=10.1111/j.1600-0854.2011.01291.x|issn=1600-0854|pmid=21951651|doi-access=free}} and the atypical phospholipid LBPA/BMP (see next section).
Using the Vesicular Stomatitis Virus (VSV) as a “hijacker” of the endocytic pathway, Jean Gruenberg and his colleagues demonstrated that intralumenal vesicles present within multivesicular endosomes are able to undergo back-fusion with the limiting membrane of these organelles, thus releasing their content into the cytoplasm,{{Cite journal|last1=Le Blanc|first1=Isabelle|last2=Luyet|first2=Pierre-Philippe|last3=Pons|first3=Véronique|last4=Ferguson|first4=Charles|last5=Emans|first5=Neil|last6=Petiot|first6=Anne|last7=Mayran|first7=Nathalie|last8=Demaurex|first8=Nicolas|last9=Fauré|first9=Julien|date=2005|title=Endosome-to-cytosol transport of viral nucleocapsids|journal=Nature Cell Biology|volume=7|issue=7|pages=653–664|doi=10.1038/ncb1269|issn=1465-7392|pmc=3360589|pmid=15951806}} a process regulated by the ESCRT-related proteins TSG101 and ALIX,{{Cite journal|last1=Bissig|first1=Christin|last2=Lenoir|first2=Marc|last3=Velluz|first3=Marie-Claire|last4=Kufareva|first4=Irina|last5=Abagyan|first5=Ruben|last6=Overduin|first6=Michael|last7=Gruenberg|first7=Jean|date=2013-05-28|title=Viral infection controlled by a calcium-dependent lipid-binding module in ALIX|journal=Developmental Cell|volume=25|issue=4|pages=364–373|doi=10.1016/j.devcel.2013.04.003|issn=1534-5807|pmc=4129370|pmid=23664863}} and since shown to be exploited by various other invaders of the cells such as the Anthrax toxin,{{Cite journal|last1=Abrami|first1=Laurence|last2=Brandi|first2=Lucia|last3=Moayeri|first3=Mahtab|last4=Brown|first4=Michael J.|last5=Krantz|first5=Bryan A.|last6=Leppla|first6=Stephen H.|last7=van der Goot|first7=F. Gisou|date=2013-11-27|title=Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin|journal=Cell Reports|volume=5|issue=4|pages=986–996|doi=10.1016/j.celrep.2013.10.019|issn=2211-1247|pmc=3866279|pmid=24239351}} and several other viruses.{{Cite journal|last1=Bissig|first1=Christin|last2=Gruenberg|first2=Jean|date=2014|title=ALIX and the multivesicular endosome: ALIX in Wonderland|journal=Trends in Cell Biology|volume=24|issue=1|pages=19–25|doi=10.1016/j.tcb.2013.10.009|issn=1879-3088|pmid=24287454}}
= Characterization of lysobisphosphatidic acid using anti-phospholipid antibodies =
A milestone discovery in the career of Jean Gruenberg was the identification and the characterization of an atypical inverted cone-shaped phospholipid,{{Cite journal|last1=Chevallier|first1=J.|last2=Sakai|first2=N.|last3=Robert|first3=F.|last4=Kobayashi|first4=T.|last5=Gruenberg|first5=J.|last6=Matile|first6=S.|date=2000-06-29|title=Rapid access to synthetic lysobisphosphatidic acids using P(III) chemistry|journal=Organic Letters|volume=2|issue=13|pages=1859–1861|issn=1523-7060|pmid=10891176|doi=10.1021/ol0059246}} originally named lysobisphosphatidic acid (LBPA) and also known as bis(monoacylglycero)phosphate (BMP). Using specific monoclonal antibodies, LBPA/BMP was shown to be enriched in intralumenal vesicles of late endosomes{{Cite journal|last1=Kobayashi|first1=T.|last2=Stang|first2=E.|last3=Fang|first3=K. S.|last4=de Moerloose|first4=P.|last5=Parton|first5=R. G.|last6=Gruenberg|first6=J.|date=1998-03-12|title=A lipid associated with the antiphospholipid syndrome regulates endosome structure and function|journal=Nature|volume=392|issue=6672|pages=193–197|doi=10.1038/32440|issn=0028-0836|pmid=9515966|bibcode=1998Natur.392..193K|s2cid=4322776}} and to regulate the intracellular transport and homeostasis of cholesterol.{{Cite journal|last1=Kobayashi|first1=T.|last2=Beuchat|first2=M. H.|last3=Lindsay|first3=M.|last4=Frias|first4=S.|last5=Palmiter|first5=R. D.|last6=Sakuraba|first6=H.|last7=Parton|first7=R. G.|last8=Gruenberg|first8=J.|date=1999|title=Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport|journal=Nature Cell Biology|volume=1|issue=2|pages=113–118|doi=10.1038/10084|issn=1465-7392|pmid=10559883|s2cid=15948485}} LBPA/BMP is also directly involved in the formation of intracellular vesicles within multivesicular endosomes and endosome-mimicking liposomes.
See also
External links
- [http://www.unige.ch/sciences/biochimie/labs/jean-gruenberg/research/ Gruenberg Laboratory webpage]
- [https://nccr-chembio.ch/blog/tribute-jean-gruenberg/ NCCR: Chemical Biology; Tribute to Jean Gruenberg]
References
{{reflist}}
{{Authority control}}
{{DEFAULTSORT:Gruenberg, Jean}}