Johnson–Wilson theory

{{Short description|Generalized cohomology theory}}

In algebraic topology, Johnson–Wilson theory E(n) is a generalized cohomology theory introduced by {{harvs|txt|last1=Johnson|first1= David Copeland|last2= Wilson|first2= W. Stephen|year=1975}}. Real Johnson–Wilson theory ER(n) was introduced by {{harvs|txt|last1=Hu | first1=Po | last2=Kříž | first2=Igor |year=2001}}.

References

  • {{cite journal | last1=Hu | first1=Po | last2=Kříž | first2=Igor | title=Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence | doi=10.1016/S0040-9383(99)00065-8 | mr=1808224 | year=2001 | journal=Topology | issn=0040-9383 | volume=40 | issue=2 | pages=317–399| doi-access= }}
  • {{cite journal | mr=0377856

|last1=Johnson|first1= David Copeland|last2= Wilson|first2= W. Stephen

|title=BP operations and Morava's extraordinary K-theories.

|journal=Mathematische Zeitschrift |volume=144 |year=1975|issue= 1|pages= 55–75|doi=10.1007/BF01214408 |s2cid=5930892}}

{{DEFAULTSORT:Johnson-Wilson theory}}

Category:Homotopy theory

{{Abstract-algebra-stub}}

{{Topology-stub}}