Join (category theory)

{{Short description|Construction for categories}}

{{Other uses|Join (disambiguation)}}

In category theory in mathematics, the join of categories is an operation making the category of small categories into a monoidal category. In particular, it takes two small categories to construct another small category. Under the nerve construction, it corresponds to the join of simplicial sets.

Definition

For small categories \mathcal{C} and \mathcal{D}, their join \mathcal{C}\star\mathcal{D} is the small category with:Joyal 2008, p. 241

: \operatorname{Ob}(\mathcal{C}\star\mathcal{D})

=\operatorname{Ob}(\mathcal{C})\sqcup\operatorname{Ob}(\mathcal{D});

: \operatorname{Hom}_{\mathcal{C}\star\mathcal{D}}(X,Y)

:=\begin{cases}

\operatorname{Hom}_{\mathcal{C}}(X,Y);

& X,Y\in\operatorname{Ob}(\mathcal{C}) \\

\operatorname{Hom}_{\mathcal{D}}(X,Y);

& X,Y\in\operatorname{Ob}(\mathcal{D}) \\

\{*\};

& X\in\operatorname{Ob}(\mathcal{C}), Y\in\operatorname{Ob}(\mathcal{D}) \\

\emptyset;

& X\in\operatorname{Ob}(\mathcal{D}), Y\in\operatorname{Ob}(\mathcal{C})

\end{cases}.

The join defines a functor -\star-\colon

\mathbf{Cat}\times\mathbf{Cat}\rightarrow \mathbf{Cat}, which together with the empty category as unit element makes the category of small categories \mathbf{Cat} into a monoidal category.

For a small category \mathcal{C}, one further defines its left cone and right cone as:

:

\mathcal{C}^\triangleleft

:=[0]\star\mathcal{C},

:

\mathcal{C}^\triangleright

:=\mathcal{C}\star[0].

Right adjoints

Let \mathcal{D} be a small category. The functor \mathcal{D}\star-\colon

\mathbf{Cat}\rightarrow \mathcal{D}\backslash\mathbf{Cat},

\mathcal{D}\mapsto(\mathcal{C}\mapsto\mathcal{D}\star\mathcal{C}) has a right adjoint \mathcal{D}\backslash\mathbf{sSet}\rightarrow\mathbf{sSet},

(F\colon\mathcal{D}\rightarrow\mathcal{E})\mapsto F\backslash\mathcal{E} (alternatively denoted \mathcal{D}\backslash\mathcal{E}) and the functor -\star\mathcal{D}\colon

\mathbf{Cat}\rightarrow \mathcal{D}\backslash\mathbf{Cat},

\mathcal{D}\mapsto(\mathcal{C}\mapsto\mathcal{C}\star\mathcal{D}) also has a right adjoint \mathcal{D}\backslash\mathbf{sSet}\rightarrow\mathbf{sSet},

(F\colon\mathcal{D}\rightarrow\mathcal{E})\mapsto\mathcal{E}/F (alternatively denoted \mathcal{E}/\mathcal{D}).Kerodon, [https://kerodon.net/tag/016H Corollary 4.3.2.17.] A special case is \mathcal{D}=[0] the terminal small category, since \mathbf{Cat}_*

=[0]\backslash\mathbf{Cat} is the category of pointed small categories.

Properties

  • The join is associative. For small categories \mathcal{C}, \mathcal{D} and \mathcal{E}, one has:Kerdon, [https://kerodon.net/tag/0166 Remark 4.3.2.6.]
  • :

(\mathcal{C}\star\mathcal{D})\star\mathcal{E}

\cong\mathcal{C}\star(\mathcal{D}\star\mathcal{E}).

  • The join reverses under the dual category. For small categories \mathcal{C} and \mathcal{D}, one has:Kerodon, [https://kerodon.net/tag/0168 Warning 4.3.2.8.]
  • :

(\mathcal{C}\star\mathcal{D})^\mathrm{op}

\cong\mathcal{C}^\mathrm{op}\star\mathcal{D}^\mathrm{op}.

  • Under the nerve, the join of categories becomes the join of simplicial sets. For small categories \mathcal{C} and \mathcal{D}, one has:Joyal 2008, Corollary 3.3.Kerodon, [https://kerodon.net/tag/0175 Example 4.3.3.14.]
  • :

N(\mathcal{C}\star\mathcal{D})

\cong N\mathcal{C}*N\mathcal{D}.

Literature

  • {{cite web |last=Joyal |first=André |author-link=André Joyal |date=2008 |title=The Theory of Quasi-Categories and its Applications |url=https://ncatlab.org/nlab/files/JoyalTheoryOfQuasiCategories.pdf |language=en}}

References