Jordan's totient function

{{Short description|Arithmetical function}}

In number theory, Jordan's totient function, denoted as J_k(n), where k is a positive integer, is a function of a positive integer, n, that equals the number of k-tuples of positive integers that are less than or equal to n and that together with n form a coprime set of k+1 integers.

Jordan's totient function is a generalization of Euler's totient function, which is the same as J_1(n). The function is named after Camille Jordan.

Definition

For each positive integer k, Jordan's totient function J_k is multiplicative and may be evaluated as

:J_k(n)=n^k \prod_{p|n}\left(1-\frac{1}{p^k}\right) \,, where p ranges through the prime divisors of n.

Properties

  • \sum_{d | n } J_k(d) = n^k. \,

:which may be written in the language of Dirichlet convolutions asSándor & Crstici (2004) p.106

:: J_k(n) \star 1 = n^k\,

:and via Möbius inversion as

::J_k(n) = \mu(n) \star n^k.

:Since the Dirichlet generating function of \mu is 1/\zeta(s) and the Dirichlet generating function of n^k is \zeta(s-k), the series for J_k becomes

::\sum_{n\ge 1}\frac{J_k(n)}{n^s} = \frac{\zeta(s-k)}{\zeta(s)}.

:: J_k(n) \sim \frac{n^k}{\zeta(k+1)}.

::\psi(n) = \frac{J_2(n)}{J_1(n)},

:and by inspection of the definition (recognizing that each factor in the product over the primes is a cyclotomic polynomial of p^{-k}), the arithmetic functions defined by \frac{J_k(n)}{J_1(n)} or \frac{J_{2k}(n)}{J_k(n)} can also be shown to be integer-valued multiplicative functions.

  • \sum_{\delta\mid n}\delta^sJ_r(\delta)J_s\left(\frac{n}{\delta}\right) = J_{r+s}(n).Holden et al in external links. The formula is Gegenbauer's.

Order of matrix groups

:

|\operatorname{GL}(m,\mathbf{Z}/n)|=n^{\frac{m(m-1)}{2}}\prod_{k=1}^m J_k(n).

:

|\operatorname{SL}(m,\mathbf{Z}/n)|=n^{\frac{m(m-1)}{2}}\prod_{k=2}^m J_k(n).

:

|\operatorname{Sp}(2m,\mathbf{Z}/n)|=n^{m^2}\prod_{k=1}^m J_{2k}(n).

The first two formulas were discovered by Jordan.

Examples

  • Explicit lists in the OEIS are J2 in {{OEIS2C|A007434}}, J3 in {{OEIS2C|A059376}}, J4 in {{OEIS2C|A059377}}, J5 in {{OEIS2C|A059378}}, J6 up to J10 in {{OEIS2C|A069091}} up to {{OEIS2C|A069095}}.
  • Multiplicative functions defined by ratios are J2(n)/J1(n) in {{OEIS2C|A001615}}, J3(n)/J1(n) in {{OEIS2C|A160889}}, J4(n)/J1(n) in {{OEIS2C|A160891}}, J5(n)/J1(n) in {{OEIS2C|A160893}}, J6(n)/J1(n) in {{OEIS2C|A160895}}, J7(n)/J1(n) in {{OEIS2C|A160897}}, J8(n)/J1(n) in {{OEIS2C|A160908}}, J9(n)/J1(n) in {{OEIS2C|A160953}}, J10(n)/J1(n) in {{OEIS2C|A160957}}, J11(n)/J1(n) in {{OEIS2C|A160960}}.
  • Examples of the ratios J2k(n)/Jk(n) are J4(n)/J2(n) in {{OEIS2C|A065958}}, J6(n)/J3(n) in {{OEIS2C|A065959}}, and J8(n)/J4(n) in {{OEIS2C|A065960}}.

Notes

{{reflist}}

References

  • {{cite book | author=L. E. Dickson | author-link=Leonard Eugene Dickson | title=History of the Theory of Numbers, Vol. I | orig-year=1919 |year=1971 | publisher=Chelsea Publishing | isbn=0-8284-0086-5 | jfm=47.0100.04 | page=147 }}
  • {{cite book | title=Problems in Analytic Number Theory | author=M. Ram Murty | author-link=M. Ram Murty | volume=206 | series=Graduate Texts in Mathematics | publisher=Springer-Verlag | year=2001 | isbn=0-387-95143-1 | zbl=0971.11001 | page=11 }}
  • {{cite book | last1=Sándor | first1=Jozsef | last2=Crstici | first2=Borislav | title=Handbook of number theory II | location=Dordrecht | publisher=Kluwer Academic | year=2004 | isbn=1-4020-2546-7 | pages=32–36 | zbl=1079.11001 }}