Jucys–Murphy element
{{Short description|Elements in representations of the symmetric group}}{{No footnotes|date=November 2021}}
In mathematics, the Jucys–Murphy elements in the group algebra of the symmetric group, named after Algimantas Adolfas Jucys and G. E. Murphy, are defined as a sum of transpositions by the formula:
:
They play an important role in the representation theory of the symmetric group.
Properties
They generate a commutative subalgebra of . Moreover, Xn commutes with all elements of .
The vectors constituting the basis of Young's "seminormal representation" are eigenvectors for the action of Xn. For any standard Young tableau U we have:
:
where ck(U) is the content b − a of the cell (a, b) occupied by k in the standard Young tableau U.
Theorem (Jucys): The center of the group algebra of the symmetric group is generated by the symmetric polynomials in the elements Xk.
Theorem (Jucys): Let t be a formal variable commuting with everything, then the following identity for polynomials in variable t with values in the group algebra holds true:
:
Theorem (Okounkov–Vershik): The subalgebra of generated by the centers
:
is exactly the subalgebra generated by the Jucys–Murphy elements Xk.
See also
References
- {{Citation
|title=A New Approach to the Representation Theory of the Symmetric Groups. 2
|authorlink1=Okounkov
|first1=Andrei |last1=Okounkov
|authorlink2=Vershik
|first2=Anatoly |last2=Vershik
|year=2004
|volume=307
|journal=Zapiski Seminarov POMI
|arxiv = math.RT/0503040
|postscript= (revised English version). }}
- {{citation
|title=Symmetric polynomials and the center of the symmetric group ring
|authorlink1=Algimantas Adolfas Jucys
|first1=Algimantas Adolfas |last1=Jucys
| year=1974 | journal=Rep. Mathematical Phys. | volume=5 | issue=1 | pages=107–112
| doi=10.1016/0034-4877(74)90019-6
|bibcode=1974RpMP....5..107J}}
- {{citation
|title=On the Young operators of the symmetric group
|authorlink1=Algimantas Adolfas Jucys
|first1=Algimantas Adolfas |last1=Jucys
| year=1966 | journal=Lietuvos Fizikos Rinkinys | volume=6 | pages=163–180
|url=https://www.lietuvos-fizikai.lt/chessidr/straipsniai/LietFizRink/LFR-1966-v6-p179-AlgJucys-On_the_Young_operators_of_the_symmetric_groups.pdf
}}
- {{citation
|title=Factorization of Young projection operators for the symmetric group
|authorlink1=Algimantas Adolfas Jucys
|first1=Algimantas Adolfas |last1=Jucys
| year=1971 | journal=Lietuvos Fizikos Rinkinys | volume=11 | pages=5–10
|url=https://www.lietuvos-fizikai.lt/chessidr/straipsniai/LietFizRink/LFR-1971-v11-p5-AlgJucys-Factorization_of_Young_projection_operators_for_the_symmetric_group.pdf
}}
- {{citation
|title=A new construction of Young's seminormal representation of the symmetric group
|first1=G. E. |last1=Murphy
| year=1981 | journal=J. Algebra | volume=69 | pages=287–297
|doi=10.1016/0021-8693(81)90205-2
|issue=2
|doi-access=free
}}
{{DEFAULTSORT:Jucys-Murphy Element}}
Category:Representation theory